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Abstract

We present a system for large scale robotic learning from demonstration. We de-
scribe a set of software tools for enabling human-robot interaction over the inter-
net and gathering the large datasets that such crowdsourcing makes possible. We
show results in which humans teach a robot to navigate a maze over the Internet.

Robots occupy a peculiar place in our culture. We have been building robots in our imaginations
for decades, robots that are alternately wondrous or terrifying, always brilliant and consummately
skilled. In contrast, real robots are typically brittle and capable of only a few simple constrained
tasks. Additionally, only expert programmers, intimately familiar with the particulars of a low-level
robotic system, can hope to achieve any kind of complex robot behavior. This paper describes our
efforts to apply the lessons of crowdsourcing to robotics to leverage the power and knowledge of a
truly large number of end users to create more skilled and robust robot controllers.

We focus on learning from demonstration (LfD), [2, 1] an approach to robot programming in which
users demonstrate desired skills to a robot. Nothing is required of the user beyond the ability to
complete the task in a way that the robot can interpret. Traditionally, LfD research has been con-
strained by the number of demonstrations that can be performed; unless a large number of users
can interact with the robot only a limited amount of data can easily be gathered. Since users do not
usually need specialized skills to demonstrate robot skills, a web-enabled system could be used to
collect data from a large number of users. An online system also lifts the burden of training the
robot from a single user who may only want to contribute a few demonstrations. Collecting data
for closed-loop control is different from many crowdsourcing applications examined in the Machine
Learning community, which has typically focused on annotation of text and labeling of images. Task
demonstration often requires a significant interaction both in terms of time and information provided
to the user. Users not only give the robot instructions, but also evaluate the results and provide new
instructions given the outcome.

We describe a recently developed system that allows a large number of users to train a robot to
solve a task (in this case maze-navigation) through a video-game style interface. While a single
demonstration may contain errors and provides only limited data, the demonstrations from multiple
users provide enough data to create a robust policy. There have been a few initial efforts in putting
robots on the Internet [4, 9]. These approaches generally allowed people to interact with robots but
were not aimed at task learning. Other work examined using crowdsourcing approaches to train
robots through game playing environments. Chernova et al examined using a multi-player video
game where users collaborate to provide user demonstrations [3]. This work differs from ours in that
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it relied on real-world user interactions in a museum, rather than an online setting with a potentially
global user base. Additionally, users were not providing demonstration on the actual robot. Our
system allows users to actually control the robot and does not require special software or plugins
other than a web browser.

1 Robot and Web Interface

The robot used in our experiments is an iRobot Create with a FitPC2 small-form-factor computer
and a Sony PS3 Eye camera. The computer maintains a wireless connection to the Internet allowing
user interactions. The robot is able to move forward, backwards, and rotate. The robot can maneuver
through a maze, pictured in Figure 1a The maze has artificial reality (AR) tags placed within it as
landmarks. The robot is able to detect the AR tags and use the size of the tag in its visual perception
to estimate its distance from each tag. The tags, along with the bump sensors that detect collisions
with walls, represent the perceptual space of the robot.

The system builds upon ROS [7], Willow Garage’s robot middleware system and leverages rosjs
[6], a lightweight Javascript binding for ROS. rosjs exposes the robot’s functionality and sensors as
web services, as well as providing security and visualization tools. Robot application developers
and researchers can create robot controllers and interfaces in the same manner as creating web
contentrosjs does not require users to install additional software or plugins beyond a web browser,
allowing a large number of users the ability to access the robot. Figure 1 shows the two interfaces
that were available to users to drive the robot to the goal location. The first shows the live video
feed to the user. The second shows a visualization of the AR tag(s): a blue polygon represents the
position of the tag within the robot’s field of view. Both visualizations also provided information on
whether the robot had hit an obstacle, by flashing red when a bump sensor activated. Subjects were
also shown a map of the maze marked with the position of the AR tags. When users finished their
demonstrations, they clicked a link and were told if they had successfully navigated the maze, as
well as their performance in terms of time and number of collisions.

Figure 1: Users teleoperate the robot through the maze, using one of two web-based visualizations.

2 Experimental Results

132 individual subjects participated in the robot training task from all over the world. Subjects
could participate as many times as they liked and a total of 276 demonstrations were collected. In
the context of human-robot interaction studies, this is a very large subject pool. Our hope is that the
availability of rosjs and similar services will encourage more such studies with even larger numbers
of participants. We first analyzed how the difference between the two interfaces influenced the
user’s effectiveness in demonstrating the task to the robot. Humans were better at navigating the
maze using in the video. On average, those completing the maze with the video feed were able to
do so 16.03 seconds, or 36.3%, faster than those who could see the blue squares. While users with
video were faster at negotiating the maze, they were less able to maneuver without running into the
walls. Drivers with video were more than twice as likely to crash into a wall – 1.15 crashes per
demonstration as opposed to 0.45. Part of this might be explainable by the fact that, since they were
driving faster, they were more limited by their reaction time or by network latency, transmitting video
requires more bandwidth than sending a few coordinates used by rosjs to construct a visualization.

We examined if the data from one visualization modality was more effective than the other. We
used ID3 [8], a decision tree learning algorithm to construct decision trees that served as the robot’s
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Figure 2: Robot performance as a fraction of training trials seen. Top line represents a robot trained
on tag-only data; bottom line is a robot trained by people with access to video. 1320 total trials.

policy. ID3 prefers smaller decision trees and chooses to split selecting the attribute for which the
entropy is minimum. We examined how robot performance was affected by the type of visualization
and the percentage of training trials seen. For each trial, the robot was given access to a percentage
of the training corpus and built a decision tree based upon that data. The robot was started in
approximately the same position each time, facing the tag indicating the first turn about 1.3 meters
away. A trial was considered successful if the robot stopped in the correct goal position, facing
the final tag and less than 0.4 meters away. If the robot stopped elsewhere, or began performing
repetitive sequences of actions which did not make progress toward the goal, the trial was marked
a failure. Figure 2 shows the results of these experiments. A log scale is used since most of the
difference occur when there are fewer training examples available. We also examined how well the

(a) A robot picks its way through a dif-
ferent maze from the one it was taught to
navigate.
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(b) Robot performance in a new maze, as
a function of the fraction of training trials
seen. The top line represents tag training
data, bottom line is video. 900 total trials.

Figure 3: Experimental results to examine how the learned policy performs on a new maze.

training generalized to a similar but not identical task. To do this we created another maze, shown
in Figure 3a. Successful navigation through the new maze required the same qualitative sequence
of steps – the tags were in the same order and the turns were in the same direction as before – the
maze’s layout was otherwise very different. Right angles were replaced by acute and obtuse ones,
and the lengths of each maze leg were changed. We allowed the robot to learn on successively larger
fractions of the training data. The results are summarized in Figure 3b.

Researchers in data mining and machine translation have been able to take advantage of Google’s
index of billions of crowdsourced documents to show that simple learning algorithms that focus upon
recognizing specific features outperform more conceptually sophisticated ones [5]. We conjecture
that similar results will be observed if large amounts of data can be collected for learning from
demonstration. We examined how other learning algorithms performed on this dataset. We trained
the classifiers on successively larger fractions of training data and tested on the remainder. Our initial
results are presented in Figure 4. While no clear pattern is immediately obvious from these results,
a more extensive analysis of different learning algorithms, a larger dataset, and a more complex task
may help discover the effect of large scale data for learning from demonstration tasks.
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Figure 4: Comparison of the prediction accuracy of several learning algorithms as a function of the
percentage of training trials.

3 Conclusions and Future Work

We presented an initial examining the use of crowdsourcing for learning for demonstration. We plan
to extend this system to more complex tasks such as manipulation. We plan to study how that teams
of people can jointly interact and collaboratively train the robot. Currently our work has focused
upon users demonstrating predefined tasks; an exciting avenue of research is to use crowdsourcing
to find new potential robotic applications that robotics research has not yet pursued.

4 Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research under grant YIP:
FA-9550-09-1-0206. Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the AFOSR.

References

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57:469–483, 2009.

[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Handbook of robotics, chapter Robot pro-
gramming by demonstration, pages 1371–1394. Springer, 2008.

[3] S. Chernova, J. Orkin, and C. Brazeal. Crowdsourcing hri through online multi-player games.
In Proceedings of the AAAI 2010 Fall Symposium on Dialog with Robots, 2010.

[4] K. Goldberg, H. Dreyfus, A. Goldman, O. Grau, M. Gržinić, B. Hannaford, M. Idinopulos,
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