Preferences in college applications A non-parametric Bayesian analysis of top-10 rankings

Alnur Ali¹ Thomas Brendan Murphy² Marina Meilă³ Harr Chen⁴

¹Microsoft

²University College Dublin

³University of Washington

⁴Massachusetts Institute of Technology

Introduction	Model	Findings	Conclusions	Questions
0	0	00		
0	0	00		
0	0			
	0			

Outline

Introduction

College Applications Goals Dataset

Model

Data Coding Generalized Mallow's models Dirichlet process mixture models Gibbs sampler

Findings

General properties Overall trends

Conclusions

Introduction	Model	Findings	Conclusions	Questions
•	0	00		
0	0	00		
0	0			
	0			

College Applications

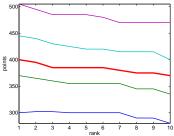
- Irish college applicants apply through a central system administered by the College Applications Office (CAO).
- Applicants list up to ten degree courses in order of preference.
- Applicants are awarded points on the basis of their Leaving Certificate results; these determine course entry.

Students pay High flyers' price of exam hopes dashed as points hit record highs

Masterclass students set new record for grades

Minister insists school subjects are not being 'dumbed down'

ohn Wabhe and	
tatharing Donnolly	
Include to show the second	
only remine top protes in	
nore has increased for the lifth	
families strongly dowind may rap;	
to man, output down, of	
ALL products Michael Breaky	
tam working harder than ever	


with grades	
	free's a cationing at a sig
All or more	
	The Experiment of Advant
di or more	of recently participation, about rad in participation,
aid as (Rps)	
sults	
ns for	200 or herer younts which
	Iron multip haired many 200
P8	
	Breezes our rained has
home	
in	
14	

his spacial any suggestion a
'dambing dower' in the Lawring.
in composers, on the deput
able, 18 conress were up, 13 net
down, six were the same and th
past water new compast. In an
ottes, 23 dogtoo control wato to 35 down, file the same and old
were new. Agricultural science is
OCD was down, but find scient

Introduction	Model	Findings	Conclusions	Questions
0	0	00		
•	0	00		
0	ŏ			

Goals

- It has been postulated that a number of factors influence course choices:
 - Institution & Location
 - Degree subject
 - Degree type (Specific vs. General)
 - Points Requirement
 - Gender

Do points requirements influence ranks?

Introduction	Model	Findings	Conclusions	Questions
0	0	00		
0	0	00		
•	0			
	0			

Dataset

- We study the cohort of applicants to degree courses from the year 2000.
- The applications data has the following properties:
 - There were 55737 applicants;
 - They selected from a list of 533 courses;
 - Applicants selected up to 10 courses.

Data Coding

• The data coding (s_1, s_2, \ldots, s_t) of $\pi | \sigma$ is defined by

 $s_j + 1 = \text{rank of } \pi^{-1}(j) \text{ in } \sigma \text{ after removing } \pi^{-1}(1:j-1).$

 σ

Example, if $\sigma = [a \ b \ c \ d]$ and $\pi = [c \ a \ b \ d]$

		0			
$\pi^{-1}(1)=c$	$s_1 = 2$	а	b	С	d
$\pi^{-1}(2) = a$	$s_2 = 0$	а	b	•	d
$\pi^{-1}(3) = b$	$s_3 = 0$.	b	•	d
$\pi^{-1}(4) = d$	$s_4 = 0$				d d d d

• Kendall's distance is $d_{\text{Kendall}}(\pi, \sigma) = \sum_{j=1}^{t-1} s_j$.

Introduction	Model	Findings	Conclusions	Questions
0	0	00		
0	•	00		
0	0			
	0			

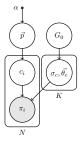
Generalized Mallow's models

Mallow's model assumes that

$$P(\pi|\sigma, heta) = rac{1}{\psi(heta)} \exp\left(- heta \sum_{j=1}^{t-1} s_j(\pi|\sigma)
ight).$$

• Can extend Mallow's model to allow for varying precision in ranking

$$P(\pi|\sigma,\vec{\theta}) = \frac{1}{\psi(\vec{\theta})} \exp\left(-\sum_{j=1}^{t-1} \theta_j s_j(\pi|\sigma)\right).$$


Location parameter σ, scale parameters (θ₁,..., θ_{max t-1}).
ψ(θ) is a tractable normalization constant.

Introduction	
0	
0	
0	

Model 0 0 Finding: 00 00 Conclusion

Questions

Dirichlet process mixture models

- $\vec{p} \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$
- $c_i \sim Multinomial(p_1, \dots, p_K)$

•
$$\sigma_c, \vec{\theta_c} \sim G_0 \propto P^0(\sigma, \vec{\theta}; \nu, \vec{r})$$

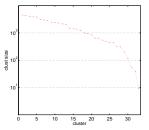
•
$$\pi_i \sim GM(\pi_i | \sigma_c, \vec{\theta_c})$$

- Prior: conjugate to *GM*, informative w.r.t. $\vec{\theta}$.
- DPMM benefits: no need to specify K upfront, identifies both large and small clusters.

Gibbs sampler

- 1. Resample cluster assignments:
 - 1.1 Draw existing cluster w.p. $\propto \frac{N_c-1}{N+\alpha-1} GM(\pi | \sigma_c, \vec{\theta_c})$ or Beta function approximation.

1.2 Draw new cluster w.p. $\propto \frac{\alpha}{N+\alpha-1} \frac{(n-t)!}{n!}$.

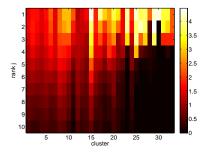

- 2. Resample cluster parameters:
 - 2.1 Draw $\vec{\theta_c}$ by *slice sampling* or a *Beta* distribution approx.
 - 2.2 Draw σ_c "stage-wise" or by a *Beta* function approx.

Beta approx. based sampler (Beta-Gibbs) faster than slice based sampler (Slice-Gibbs) (per iteration & overall time to convergence).

Introduction	Model	Findings	Conclusions	Questions
0	0	•0		
0	0	00		
0	0			
	0			

General properties of the clusterings

- The DPMM found 164 clusters.
- Thirty three of these clusters had nine or more members.


• The clusters were characterized by a number of features.

Cluster	Size	Description	Male (%)	Points Average (SD)
1	4536	CS & Engineering	77.2	369 (41)
2	4340	Applied Business	48.5	366 (40)
3	4077	Arts & Social Science	13.1	384 (42)
4	3898	Engineering (Ex-Dublin)	85.2	374 (39)
5	3814	Business (Ex-Dublin)	41.8	394 (32)
6	3106	Cork Based	48.9	397 (33)
33	9	Teaching (Home Economics)	0.0	417 (4)

Introduction	Model	Findings	Conclusions	Questions
0	0	0.		
0	0	00		
0	0			
	0			

Precision

• The precision parameters (θ_j) were very high for top rankings.

- The θ_j values tended to decrease with j.
- In many cases, the θ_j values dropped suddenly after a particular point.
- The central ranking σ for each cluster is of length 533; the θ_j values suggested a point to truncate the ranking.

Introduction	Model	Findings	Conclusions	Questions
0	0	00		
0	0	•0		
0	0			
	0			

Overall trends

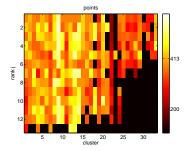
- Subject
 - Subject matter is a key determinant of course choice.
 - The courses chosen are similar in subject area.
 - Some opt for general degrees (eg. Science) and others opt for specific (eg. Chemical Engineering).
- Gender
 - There is quite a difference in the percentage male/female applicants in some clusters.
 - Males tend to dominate CS/Engineering clusters.
 - Females tend to dominate social science/education clusters.
- Geography
 - There is evidence of the college location influencing choice.
 - The sixth largest cluster is dominated by courses from colleges in Cork (CIT and UCC).
 - There is evidence of a mix of subject matter and geography having a joint effect; the fourth largest cluster is dominated by engineering courses outside Dublin.

0 00	
• • • • • • • • • • • • • • • • • • •	
0 0	
0	

Overall trends

- Subject
 - Subject matter is a key determinant of course choice.
 - The courses chosen are similar in subject area.
 - Some opt for general degrees (eg. Science) and others opt for specific (eg. Chemical Engineering).
- Gender
 - There is quite a difference in the percentage male/female applicants in some clusters.
 - Males tend to dominate CS/Engineering clusters.
 - Females tend to dominate social science/education clusters.
- Geography
 - There is evidence of the college location influencing choice.
 - The sixth largest cluster is dominated by courses from colleges in Cork (CIT and UCC).
 - There is evidence of a mix of subject matter and geography having a joint effect; the fourth largest cluster is dominated by engineering courses outside Dublin.

	Introduction	Model	Findings	Conclusions	Questions
	0	0	00		
	0	0	•0		
0 0	0	0			
0		0			


Overall trends

- Subject
 - Subject matter is a key determinant of course choice.
 - The courses chosen are similar in subject area.
 - Some opt for general degrees (eg. Science) and others opt for specific (eg. Chemical Engineering).
- Gender
 - There is quite a difference in the percentage male/female applicants in some clusters.
 - Males tend to dominate CS/Engineering clusters.
 - Females tend to dominate social science/education clusters.
- Geography
 - There is evidence of the college location influencing choice.
 - The sixth largest cluster is dominated by courses from colleges in Cork (CIT and UCC).
 - There is evidence of a mix of subject matter and geography having a joint effect; the fourth largest cluster is dominated by engineering courses outside Dublin.

Points

• The points requirements for the courses in the truncated central rankings were not monotonically decreasing in any cluster.

• This suggests that points requirements are not important when students are ranking courses.

Introduction	Model	Findings	Conclusions
0	0	00	
0	0	00	
0	0		
	0		

- The CAO system appears to be working more effectively than many suggest.
- The clusters revealed in this analysis tend to be cohesive in subject matter.
- The focus of possible improvements to the CAO system might be directed at how points are scored.
- The Generalized Mallows DPMM facilitated discovering small clusters that were missed in previous analyses.
- The model also allowed for the study of precision in rankings within clusters.

Introduction	Model	Findings	Conclusions	Questions
0	0	00		
0	0	00		
0	0			
	0			

Questions?

Thanks!