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1 Introduction

Analysing international political behaviour based on similar precedent circumstances is one of the
basic cognitive devices that policymakers use to define and evaluate current situations. These analy-
ses are based on international interactions and events that occur between political actors in different
periods of history. In quantitative researches on international relations, these political behaviours
are coded in terms of event data which, in simple terms, describe ”who did (when/where) what to
whom” [1]. Formally, event data are generated by examining newspaper headlines on a daily basis
(or up to several times a day when there are many important altercations), determining the two main
actors involved in that event, and assigning a numerical code for the type of interaction between
them.

In the past, few researchers used machine learning methods to predict and monitor conflicts around
the world. Trappl [12] regroups a handful of the last ten years of research in the interdisciplinary
field of machine learning for peace. Two chapters from this book are close to the case we studied.
Trappl himself used case based reasoning in order to learn decision trees for predicting the outcome
of future conflict mediation attempts [11]. Schrodt also worked using decision trees and neural
networks on conflict databases [7, 8], but mainly used hidden Markov models to predict and monitor
conflicts using automatically analysed news reports [6].

In this paper, we will evaluate the performance of N-gram models on the problem of forecasting
political conflicts from sequences of events. For the current phase of the project, we focused on
event data collected from the Balkans war in the 1990’s. We begin by giving an overview of the
corpus and the coding schemes used in Section 2, followed by our methodology and a discussion on
the results obtained in Sections 3 and 4, respectively.

2 Pretreatment of Conflict Data Sets

Data sets we made use of were automatically extracted event series from news reports using the
Kansas Event Data System (KEDS) project [9, 5]1. These data sets are series of events formalized
as pairwise interactions involving two participants, one acting against the other. Formally, a conflict
is described as an event sequence e1, ..., en of tuples ei = 〈ti, si, oi, ci〉. where:

• ti is the time-stamp (a number representing the date, by the day);

• si is the subject (the source of the action);

• oi is the object (the target of the action);

• ci is the code (the event/action type).

The categories of events are given according to the World Event/Interaction Survey (WEIS) [4]
which roughly assigns higher codes to more hostile events. Events are distributed in 22 categories,
inside of which they may be clustered into other subcategories. For sake of simplicity, we only kept
the 22 main event types and compared them to the 4 event types that Schrodt used in [6]. This

1Data sets are available at http://web.ku.edu/˜keds/data.html
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latter categorization clusters actions into highly cooperative, mildly cooperative, mildly hostile and
highly hostile classes. Table 1 shows an excerpt of the dataset after simplifying the event codes and
adding the 4 event types, where the first column shows the time-stamp, the second represents the
object, the third represents the subject, the fourth and fifth columns show the WEIS code and the
simplified WEIS code, and the last column is the 4 event type code. Note that we also removed the
participants involved in less than one hundred events, and denoted them by ’—’, meaning that the
other participant may be anybody else.

32551 CRO UNO 42 4 1
32552 BOSSER MOS 150 15 3
32554 KSV — 95 9 1
32556 BOS USA 41 4 1

Table 1: Event dataset samples

In order to define the vocabulary needed by N-gram models, we chose to compare two types of
event encoding schemes. In the first one, introduced by Schrodt in [6], we only consider a single
actor at a time. This means that each event is split into two separate events; one considering the
subject acting upon anybody, the other considering the object ”being acted upon” by anybody. For
instance, the event 32551 CRO UNO 42 4 1 is divided into the events 31138 CRO ---42
4 1 and 31138 ---UNO 42 4 1. As a result, there are two codes for each actor, one when
he is the subject, and one when he is the object. This type of encoding, which we named the low-
interaction scheme (LO), roughly considers how a specific actor interacts with everybody. The other
type of coding scheme simply considers all possible pairs of interactions, thus requiring much more
codes but representing the possible interactions in a better way. We refer to it as the high interaction
scheme (HI).

Therefore, a different code was assigned for all interactions of each actor and for each event type.
For example, for the Balkans dataset where the top 11 actors were considered, the low interaction
scheme with 4 event types results in 88 codes, while the high interaction scheme with 22 event types
gives us 2904 codes. We also varied the number of actors and created datasets for 4, 6, 11, 50 and 99
actors, each of which were chosen according to their level of involvement in the conflict. Overall,
results with 11 actors seem to present a good tradeoff between involvement and relevance of actors
in the Balkans conflict.

Finally, following the approach Schrodt used in [6], a week was defined as high conflict if the
number of events with WEIS code above 18 was greater than a given threshold. This threshold was
set to 20 force events in our experiments. We then took the one hundred events that happened one,
three and six months prior to the start of that week in order to train and test our N-gram models2. As
a result, we had six datasets of event sequences for every actor-coding scheme combination; one for
high conflict weeks and one for low conflict weeks, for each of the three forecast periods.

3 Methodology

We used N-gram language models to learn sequences of recurrent patterns in the event database.
Formally speaking, a language model is defined as a probability distribution p(s) over a sequence of
words s that reflects how frequent the sequence is within the whole text. In our context, the sentences
that make up the dataset are sequences of 100 consecutive events based on the coding scheme chosen.
Therefore, for the events in Table 1, one possible sequence could be 281 171 353 121 where
each word (code) in the sequence is the code representing the event (in this case, based on a high
interaction scheme with 4 event codes, and considering the top 11 actors involved).

Separate event sequences were prepared for each different actor set (i.e. sets containing the top 4, 6,
11, 50, or 99 actors) and for every coding scheme (high interactions or low interactions, with 4 or 22
possible event codes). For every actor-coding scheme combination, we built different event datasets
for groups of sentences leading to high conflict or low conflict weeks, with 1 month, 3 months and 6
months forecast periods, a total of 120 event datasets. Each of the event datasets were further divided
into training and test sets based on a 5-fold cross validation procedure with random selection.

2Why 20? why 100? These are free parameters and explanations are given in [6].
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Figure 1: Results for the top 11 actors with a 28 day forecast period.

Using the event datasets, N-gram models were estimated for all of the possible combinations de-
scribed above using the SRI Language Modeling toolkit (SRILM) [10]. In each case, for any actor-
coding scheme-forecast period chosen, separate language models were trained over event datasets
corresponding to high conflict and low conflict weeks, and the Witten-Bell discounting method was
used to smooth the probability distributions. A binary classifier was then used to label the event se-
quences; in other words, every sentence in the test set was evaluated using both the high conflict and
low conflict language models, and the perplexity of each model was calculated counting all input to-
kens. Consequently, sentences (sequences of 100 consecutive events) were individually classified as
leading to a high or low conflict week based on which model gave lower perplexity to that sentence.

In the next phase of the project, we tried to model events not as interactions among two single
actors, but as different coalitions acting against one another. Following the approach in [1], actors
were attributed to groups in a way that intra-group negative interactions were rare or nonexistent,
while inter-group conflicts were frequent and serious. For instance, two of the main actors in the
Balkans war, namely Serbia and Serbs in Bosnia (represented by SER and BOSSER, respectively)
appear to have shared a common strategic outlook throughout the conflict, and it seems natural to
assign them to a single group. With these criteria in mind, we identified four groups of actors which
had quite similar strategic views during the conflict period using the results in [1]. These consist of
the two main groups in conflict; namely {BOS(Bosnia)} against {SER and BOSSER}, a mediator
group {UNO and NAT (NATO)} along with an international group consisting of all other actors3.

Using these groupings, we replaced actors with the corresponding group in which they belonged
to, and prepared training and test sets for configurations similar to the ones described for regular
N-grams. The IBM class-based N-gram model [2] was then applied to build the language models,
which (for the simple bigram case) estimates sequences as:

p(wi|wi−1) ≈ p(ci|ci−1)p(wi|ci) (1)

As with the regular N-gram approach, the language models were then used to find the perplexity
of individual sentences in the test set, and high conflict or low conflict labels were assigned by
comparing the perplexities given by each model.

4 Results

To compare the performance of our models, we computed various correctness measures for the
different configurations described above. These measures are essentially based on the total number
of sentences predicted as high conflict when we actually have a high conflict week (TP) or a low
conflict week (FP), and the total number of sentences predicted as low conflict when we actually
have a low conflict week (TN) or a high conflict week (FN). Accordingly, the performance measures

3A separate grouping scheme had to be applied for the 4 actor set, which was originally borrowed from
Shrodt [6] and did not contain some of the most involved actors (i.e. UN and NATO, and BOSSER that was
merged into SER)
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28 days 91 days 184 days
LO scheme 91.16 89.91 89.79
HI scheme 92.84 94.31 94.01

(a) Accuracy

type 28 days 91 days 184 days

LO high-conflict 90.56 86.15 86.14
low-conflict 91.70 92.01 91.92

HI high-conflict 87.01 77.45 76.21
low-conflict 95.07 96.74 96.58

(b) F1-measure

Table 2: Results of class-based 6-gram model for the top 11 actors.

calculated were the overall accuracy of each model (the relative number of correctly predicted high
and low conflict weeks; i.e. TP+TN

TP+FP+TN+FN ), true-positive and true-negative precisions (how many
of the weeks predicted as high/low conflict were actually a high/low conflict week; i.e. TP

TP+FP and
TN

TN+FN ), true-positive and true-negative recalls (of all actual high/low conflict weeks, how many were
correctly labelled as high/low conflict; i.e. TP

TP+FN and TN
TN+FP ), and the Fβ-measure for β ∈ {0.5, 1, 2}

that combines precision and recall to put more emphasis on either one of them.

Due to the large number of performance results obtained for all configurations, only the accuracy and
true-positive F1-measure (where precision and recall are evenly weighted) for 11 actors with a 28
day forecast period will be discussed here. Figures 1a and 1b show how each of our different coding
schemes perform when evaluating N-grams for N ∈ {2, . . . , 9}. While the overall performance of
N-grams is impressive, there is little improvement in both the accuracy and F1-measures for N ≥ 6.
Therefore, for this specific actor-coding scheme, it appears that sequences larger than 6 events in
length don’t carry much more information contributing to our model’s performance4. Furthermore,
both figures show that class-based N-grams perform as well as regular N-grams (or even do better);
a behaviour which is also observed in other actor sets containing the top 4, 6, 50 and 99 actors. This
inspiring result suggests that instead of using a large number of actors, we can achieve the same
level of performance with considerably less codes (for example, 80 codes instead of 39600 codes by
grouping the top 99 actors into 4 blocks in the HI scheme with 4 event codes).

The complete accuracy and F1-measure results for the class-based 6-gram model are shown in Ta-
ble 2. We can observe from this table that, in general, low interaction coding schemes (LO) are much
better at correctly forecasting low conflict weeks (more TN’s), and high interaction schemes (HI) out-
perform LO schemes when it comes to forecasting high conflict weeks (more TP’s). This results in
LO schemes having higher precision and recall with regard to high conflict weeks, which explains
the gap between LO and HI schemes in Figure 1b. On the other hand, since the data is strongly
skewed towards low conflict weeks (around 80% of the whole dataset) the number of TN’s is larger
than the number of TP’s, and thus TN’s will have more influence over the accuracy of the model. As a
result, HI schemes have higher accuracy (Figure 1a), and higher true-negative F1-measure compared
to LO schemes.

5 Conclusion and Future Work

In this paper, we discussed the application of N-gram models to the problem of forecasting political
conflicts. Our results show that these models have impressive results when applied to the Balkans
war, with accuracies above 90% for most configurations. Analysis of the top frequent N-grams
shows some interesting recurrent sequences of events, however, extracting meaningful patterns from
the large number of data remains to be done in a future work. These models must also be used
with other datasets to analyse their performance in forecasting more complicated conflicts with
more involved actors, like the war in central Asia (between Afghanistan, Armenia-Azerbaijan and
former Soviet republics). Furthermore, instead of manually assigning actors to groups, clustering
algorithms could be used to determine the different groups of actors in conflict with each other.

4One might wonder why sequences of up to 6 consecutive events capture enough information to contribute
to the final performance results. Looking at the top counts reveals many recurrent and interesting patterns in
the data, however, discussion of these results is out of the limits of the current paper and further analysis is
required in a future work.
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