
Efficient Pattern Matching over Event Streams ∗

Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA, USA

{jagrati, yanlei, dpg, immerman}@cs.umass.edu

ABSTRACT
Pattern matching over event streams is increasingly being
employed in many areas including financial services, RFID-
based inventory management, click stream analysis, and elec-
tronic health systems. While regular expression matching
is well studied, pattern matching over streams presents two
new challenges: Languages for pattern matching over streams
are significantly richer than languages for regular expression
matching. Furthermore, efficient evaluation of these pattern
queries over streams requires new algorithms and optimiza-
tions: the conventional wisdom for stream query processing
(i.e., using selection-join-aggregation) is inadequate.

In this paper, we present a formal evaluation model that
offers precise semantics for this new class of queries and a
query evaluation framework permitting optimizations in a
principled way. We further analyze the runtime complex-
ity of query evaluation using this model and develop a suite
of techniques that improve runtime efficiency by exploiting
sharing in storage and processing. Our experimental results
provide insights into the various factors on runtime perfor-
mance and demonstrate the significant performance gains of
our sharing techniques.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Algorithms, Design, Performance, Theory

Keywords
Event streams, pattern matching, query optimization

1. INTRODUCTION
Pattern matching over event streams is a new processing

paradigm where continuously arriving events are matched

∗This work has been supported in part by NSF grants CCF
0541018 and CCF 0514621 and a gift from Cisco.
*Authors of this paper are listed alphabetically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

against complex patterns and the events used to match each
pattern are transformed into new events for output. Re-
cently, such pattern matching over streams has aroused sig-
nificant interest in industry [28, 30, 29, 9] due to its wide
applicability in areas such as financial services [10], RFID-
based inventory management [31], click stream analysis [26],
and electronic health systems [16]. In financial services, for
instance, a brokerage customer may be interested in a se-
quence of stock trading events that represent a new market
trend. In RFID-based tracking and monitoring, applica-
tions may want to track valid paths of shipments and detect
anomalies such as food contamination in supply chains.

While regular expression matching is a well studied com-
puter science problem [17], pattern matching over streams
presents two new challenges:

Richer Languages. Languages for pattern matching
over event streams [10, 15] are significantly richer than lan-
guages for regular expression matching. These event pat-
tern languages contain constructs for expressing sequenc-
ing, Kleene closure, negation, and complex predicates, as
well as strategies for selecting relevant events from an input
stream mixing relevant and irrelevant events. Of particular
importance is Kleene closure that can be used to extract
from the input stream a finite yet unbounded number of
events with a particular property. As shown in [15], the in-
teraction of Kleene closure and different strategies to select
events from the input stream can result in queries signifi-
cantly more complex than regular expressions.

Efficiency over Streams. Efficient evaluation of such
pattern queries over event streams requires new algorithms
and optimizations. The conventional wisdom for stream
query processing has been to use selection-join-aggregation
queries [3, 7, 8, 24]. While such queries can specify sim-
ple patterns, they are inherently unable to express Kleene
closure because the number of inputs that may be involved
is a priori unknown (which we shall prove formally in this
paper). Recent studies [10, 26, 34] have started to address
efficient evaluation of pattern queries over streams. The pro-
posed techniques, however, are tailored to various restricted
sets of pattern queries and pattern matching results, such as
patterns without Kleene closure [34], patterns only on con-
tiguous events [26], and pattern matching without output of
complete matches [10].

The goal of this work is to provide a fundamental evalua-
tion and optimization framework for the new class of pattern
queries over event streams. Our query evaluation framework
departs from well-studied relational stream processing due
to its inherent limitation as noted above. More specifically,

(b) Query 2:
PATTERN SEQ(Alert a, Shipment+ b[])
WHERE skip_till_any_match(a, b[]) {
 a.type = 'contaminated'
 and b[1].from = a.site
 and b[i].from = b[i-1].to }
WITHIN 3 hours

(c) Query 3:
PATTERN SEQ(Stock+ a[], Stock b)
WHERE skip_till_next_match(a[], b) {
 [symbol]
 and a[1].volume > 1000
 and a[i].price > avg(a[..i-1].price)
 and b.volume < 80%*a[a.LEN].volume }
WITHIN 1 hour

(a) Query 1:
PATTERN SEQ(Shelf a, ∼(Register b), Exit c)
WHERE skip_till_next_match(a, b, c) {
 a.tag_id = b.tag_id
 and a.tag_id = c.tag_id
 /* equivalently, [tag_id] */ }
WITHIN 12 hours

Figure 1: Examples of event pattern queries.

the design of our query evaluation framework is based on
three principles: First, the evaluation framework should be
sufficient for the full set of pattern queries. Second, given
such full support, it should be computationally efficient.
Third, it should allow optimization in a principled way. Fol-
lowing these principles, we develop a data stream system for
pattern query evaluation. Our contributions include:

• Formal Evaluation Model. We propose a formal
query evaluation model, NFAb, that combines a fi-
nite automaton with a match buffer. This model of-
fers precise semantics for the complete set of event
pattern queries, permits principled optimizations, and
produces query evaluation plans that can be executed
over event streams. The NFAb model also allows us
to analyze its expressibility in relation to relational
stream processing, yielding formal results on both suf-
ficiency and efficiency for pattern evaluation.
• Runtime Complexity Analysis. Given the new

abstraction that NFAb-based query plans present, we
identify the key issues in runtime evaluation, in partic-
ular, the different types of non-determinism in automa-
ton execution. We further analyze worst-case complex-
ity of such query evaluation, resulting in important
intuitions for runtime optimization.
• Runtime Algorithms and Optimizations. We de-

velop new data structures and algorithms to evaluate
NFAb-based query plans over streams. To improve ef-
ficiency, our optimizations exploit aggressive sharing
in storage of all possible pattern matches as well as in
automaton execution to produce these matches.

We have implemented all of the above techniques in a
Java-based prototype system and evaluated NFAb based
query plans using a range of query workloads. Results of
our performance evaluation offer insights into the various
factors on runtime performance and demonstrate significant
performance gains of our sharing techniques.

The remainder of the paper is organized as follows. We
provide background on event pattern languages in Section
2. We describe the three technical contributions mentioned
above in Section 3, Section 4, and Section 5, respectively.
Results of a detailed performance analysis are presented in
Section 6. We cover related work in Section 7 and conclude
the paper with remarks on future work in Section 8.

2. BACKGROUND
In this section, we provide background on event pattern

languages, which offers a technical context for the discussion
in the subsequent sections.

Recently there have been a number of pattern language
proposals including SQL-TS [26], Cayuga [10, 11], SASE+

[34, 15], and CEDR [5].1 Despite their syntactic variations,
these languages share many features for pattern matching
over event streams. Below we survey the key features of pat-
tern matching using the SASE+ language since it is shown
to be richer than most other languages [15]. This language
uses a simple event model: An event stream is an infinite
sequence of events, and each event represents an occurrence
of interest at a point in time. An event contains the name
of its event type (defined in a schema) and a set of attribute
values. Each event also has a special attribute capturing its
occurrence time. Events are assumed to arrive in order of
the occurrence time.2

A pattern query addresses a sequence of events that oc-
cur in order (not necessarily in contiguous positions) in the
input stream and are correlated based on the values of their
attributes. Figure 1 shows three such queries.

Query 1 detects shoplifting activity in RFID-based retail
management [34]: it reports items that were picked at a shelf
and then taken out of the store without being checked out.
The pattern clause specifies a sequence pattern with three
components: the occurrence of a shelf reading, followed by
the non-occurrence of a register reading, followed by the
occurrence of an exit reading. Non-occurrence of an event,
denoted by ’∼’, is also referred to as negation.

Each component declares a variable to refer to the cor-
responding event. The where clause uses these variables
to specify predicates on individual events as well as across
multiple events (enclosed in the ‘{’ ‘}’ pair). The predicates
in Query 1 require all events to refer to the same tag id.
Such equality comparison across all events is referred to as
an equivalence test (a shorthand for which is ‘[tag id]’). Fi-
nally, the query uses a within clause to specify a 12-hour
time window over the entire pattern.

Query 2 detects contamination in a food supply chain:
it captures an alert for a contaminated site and reports a
unique series of infected shipments in each pattern match.
Here the sequence pattern uses a Kleene plus operator to
compute each series of shipments (where ‘+’ means one or
more). An array variable b[] is declared for the Kleene
plus component, with b[1] referring to the shipment from
the origin of contamination, and b[i] referring to each sub-
sequent shipment infected via collocation with the previous
one. The predicates in where clearly specify these con-
straints on the shipments; in particular, the predicate that
compares b[i] with b[i − 1] (i > 1) specifies the collocation
condition between each shipment and its preceding one.

1There have also been several commercial efforts and standardiza-
tion initiatives [9, 28, 29]. The development of these languages is
still underway. Thus, they are not further discussed in this paper.
2 The query evaluation approach that we propose is suited to an
extension for out-of-order events, as we discuss more in §8.

Query 3 captures a complex stock market trend: in the
past hour, the volume of a stock started high, but after a pe-
riod when the price increased or remained relatively stable,
the volume plummeted. This pattern has two components,
a Kleene plus on stock events, whose results are in a[], and
a separate single stock event, stored in b. The predicate
on a[1] addresses the initial volume. The predicate on a[i]
(i > 1) requires the price of the current event to exceed
the average of the previously selected events (those previ-
ously selected events are denoted by a[..i − 1]). This way,
the predicate captures a trend of gradual (not necessarily
monotonic) price increase. The last predicate compares b to
a[a.len], where a.len refers to the last selected event in a[],
to capture the final drop in volume.

Besides the structure and predicates, pattern queries are
further defined using the event selection strategy that
addresses how to select the relevant events from an input
stream mixing relevant and irrelevant events. The strat-
egy used in a query is declared as a function in the where
clause which encloses all the predicates in its body, as shown
in Figure 1. The diverse needs of stream applications require
different strategies to be used:

Strict contiguity. In the most stringent event selection
strategy, two selected events must be contiguous in the input
stream. This requirement is typical in regular expression
matching against strings, DNA sequences, etc.

Partition contiguity. A relaxation of the above is that two
selected events do not need to be contiguous; however, if the
events are conceptually partitioned based on a condition, the
next relevant event must be contiguous to the previous one
in the same partition. The equivalence tests, e.g., [symbol]
in Query 3, are commonly used to form partitions. Partition
contiguity, however, may not be flexible enough to support
Query 3 if it aims to detect the general trend of price increase
despite some local fluctuating values.

Skip till next match. A further relaxation is to completely
remove the contiguity requirements: all irrelevant events will
be skipped until the next relevant event is read. Using this
strategy, Query 1 can conveniently ignore all the readings of
an item that arise between the first shelf reading and an exit
or register reading. Similarly, Query 3 can skip values that
do not satisfy the defined trend. This strategy is important
in many real-world scenarios where some events in the input
are “semantic noise” to a particular pattern and should be
ignored to enable the pattern matching to continue.

Skip till any match. Finally, skip till any match relaxes the
previous one by further allowing non-deterministic actions
on relevant events. Query 2 illustrates this use. Suppose
that the last shipment selected by the Kleene plus reaches
the location X. When a relevant shipment, e.g., from X to
Y, is read from the input stream, skip till any match has two
actions: (1) it selects the event in one instance of execution
to extend the current series, and (2) it ignores the event
in another instance to preserve the current state of Kleene
closure, i.e. location X, so that a later shipment, e.g., from
X to Z, can be recognized as a relevant event and enable a
different series to be instantiated. This strategy essentially
computes transitive closure over relevant events (e.g., all
infected shipments in three hours) as they arrive.

Finally, each match of a pattern query (e.g., the content
of a[] and b variables for Query 3) is output as a composite
event containing all the events in the match. Two output
formats are available [15, 28]: The default format returns

all matches of a pattern. In contrast, the non-overlap for-
mat outputs only one match among those that belong to the
same partition (for strict contiguity, treat the input stream
as a single partition) and overlap in time; that is, one match
in a partition is output only if it starts after the previous
match completes. Language support is also available to com-
pute summaries for composite events and compose queries
by feeding events output from one query as input to another
[15, 28]. These additional features are not a focus of this
paper and can be readily plugged in the query evaluation
framework proposed below.

3. FORMAL SEMANTIC MODEL
After describing event pattern queries, we study their eval-

uation and optimization in the rest of the paper. In this sec-
tion, we present a formal evaluation model that offers pre-
cise semantics for this new class of pattern queries (§3.1).
We also offer compilation algorithms that translate pattern
queries to representations in this model, thereby producing
query evaluation plans for runtime use (§3.2). This model
further allows us to analyze its expressibility in relation to
relational stream processing, yielding formal results on both
sufficiency and efficiency for pattern evaluation (§3.3) .

3.1 An Evaluation Model: NFAb Automaton
Our query evaluation model employs a new type of au-

tomaton that comprises a nondeterministic finite automa-
ton (NFA) and a match buffer, thus called NFAb, to rep-

resent each pattern query. Formally, an NFAb automaton,
A = (Q,E, θ, q1, F), consists of a set of states, Q, a set of
directed edges, E, a set of formulas, θ, labelling those edges,
a start state, q1, and a final state, F . The NFAb for Query
3 is illustrated in Figure 2.3

States. In Figure 2(a), the start state, a[1], is where the
matching process begins. It awaits input to start the Kleene
plus and to select an event into the a[1] unit of the match
buffer. At the next state a[i], it attempts to select another
event into the a[i] (i > 1) unit of the buffer. The subsequent
state b denotes that the matching process has fulfilled the
Kleene plus (for a particular match) and is ready to process
the next pattern component. The final state, F , represents
the completion of the process, resulting in the creation of a
pattern match.

In summary, the set of states Q is arranged as a linear se-
quence consisting of any number of occurrences of singleton
states, s, for non-Kleene plus components, or pairs of states,
p[1], p[i], for Kleene plus components, plus a rightmost final
state, F . A singleton state is similar to a p[1] state but
without a subsequent p[i] state.

Edges. Each state is associated with a number of edges,
representing the actions that can be taken at the state. As
Figure 2(a) shows, each state that is a singleton state or the
first state, p[1], of a pair has a forward begin edge. Each
second state, p[i], of a pair has a forward proceed edge, and
a looping take edge. Every state (except the start and final
states) has a looping ignore edge. The start state has no
edges to it as we are only interested in matches that start
with selected events.

3 Our NFAb automata are related to the left-deep automata in

[10]. The main differences are that NFAb employ an additional
buffer to compute and store complete matches and can support
the compilation of a wider range of queries (more see §7).

θa[1]_begin =
a[1].volume>1000

θa[i]_take =
a[i].symbol=a[1].symbol ∧
a[i].price>avg(a[..i-1].price)

θ*a[i]_proceed = θb_begin ∨ (¬θ*a[i]_take ∧ ¬θ*a[i]_ignore)

θb_begin =
b.symbol=a[1].symbol ∧
b.volume<80%*a[a.LEN].volume ∧
b.time<a[1].time+1 hour

(b) Basic Formulas on Edges

(c) Example Formulas after Optimization
θ*a[i]_take = θa[i]_take ∧ a[i].time<a[1].time+1 hour

Fb

ignore ignore

take

begin beginproceed
a[1] a[i]>

(a) NFA Structure

θa[i]_ignore =
¬(a[i].symbol=a[1].symbol ∧
 a[i].price>avg(a[..i-1].price)

θb_ignore =
¬(b.symbol=a[1].symbol ∧
 b.volume<80%*a[a.LEN].volume)

θa[i]_proceed = True

θ*a[i]_ignore = θa[i]_ignore ∧ a[i].time<a[1].time+1 hour

Figure 2: The NFAb Automaton for Query 3.

Each edge at a state, q, is precisely described by a triplet:
(1) a formula that specifies the condition on taking it, de-
noted by θq edge, (2) an operation on the input stream (i.e.,
consume an event or not), and (3) an operation on the match
buffer (i.e., write to the buffer or not). Formulas of edges
are compiled from pattern queries, which we explain in de-
tail shortly. As shown in Figure 2(a), we use solid lines to
denote begin and take edges that consume an event from
the input and write it to the buffer, and dashed lines for
ignore edges that consume an event but do not write it to
the buffer. The proceed edge is a special ε-edge: it does
not consume any input event but only evaluates its formula
and tries proceeding. We distinguish the proceed edge from
ignore edges in the style of arrow, denoting its ε behavior.

Non-determinism. NFAb automata may exhibit non-
determinism when at some state the formulas of two edges
are not mutually exclusive. For example, if θp[i] take and
θp[i] ignore are not mutually exclusive, then we are in a non-
deterministic skip-till-any-match situation. It is important
to note that such non-determinism stems from the query;
the NFAb model is merely a truthful translation of it.

NFAb runs. A run of an NFAb automaton is uniquely
defined by (1) the sequence of events that it has selected
into the match buffer, e.g., e3, e4 and e6, (2) the naming
of the corresponding units in the buffer, e.g., a[1], a[2], and

b for Query 3, and (3) the current NFAb state. We can
inductively define a run based on each begin, take, ignore,
or proceed move that it takes. Moreover, an accepting run
is a run that has reached the final state. The semantics of
a pattern query is precisely defined from all its accepting
runs. These concepts are quite intuitive and the details are
omitted in the interest of space.

Pattern queries with negation and query composition are
modeled by first creating NFAb automata for subqueries
without them and then composing these automata. In par-
ticular, the semantics of negation is that of a nested query,
as proposed in [34]. For instance, Query 1 from Figure 1 first
recognizes a shelf reading and an exit reading that refer to
the same tag; then for each pair of such readings it ensures
that there does not exist a register reading of the same tag

in between. To support negation using NFAb, we first com-
pute matches of the NFAb automaton that includes only the
positive pattern components, then search for matches of the
NFAb automaton for each negative component. Any match
of the latter eliminates the former from the answer set.

3.2 Query Compilation using NFAb

We next present the compilation rules for automatically
translating simple pattern queries (without negation or com-

position) into the NFAb model. Composite automata for
negation or composed queries can be constructed afterwards
by strictly following their semantics. The resulting represen-
tations will be used as query plans for runtime evaluation
over event streams.

Basic Algorithm. We first develop a basic compilation
algorithm that given a simple pattern query, constructs an
NFAb automaton that is faithful to the original query. In
the following, we explain the algorithm using Query 3 as a
running example.

Step 1. NFAb structure: As shown in Figure 2, the pat-
tern clause of a query uniquely determines the structure of
its NFAb automaton, including all the states and the edges
of each state.

The algorithm then translates the where and within
clauses of a query into the formulas on the NFAb edges.

Step 2. Predicates: The algorithm starts with the where
clause and uses the predicates to set formulas of begin, take,
and proceed edges, as shown in Figure 2(b).4 It first rewrites
all the predicates into conjunctive normal form (CNF), in-
cluding expanding the equivalence test [symbol] to a canon-
ical form, e.g., a[i].symbol = a[1].symbol. It then sorts the
conjuncts based on the notion of their last identifiers. In
this work, we call each occurrence of a variable in the where
clause an identifier, e.g., a[1], a[i], a[a.len], and b for Query
3. The last identifier of a conjunct is the one that is in-
stantiated the latest in the NFAb automaton. Consider the
conjunct “b.volume < 80% * a[a.len].volume”. Between the
identifiers b and a[a.len], b is instantiated at a later state.

After sorting, the algorithm places each conjunct on an
edge of its last identifier’s instantiation state. At the state
a[i] where both take and proceed edges exist, the conjunct
is placed on the take edge if the last identifier is a[i], and on
the proceed edge otherwise (e.g., the identifier is a[a.len]).
For Query 3, the proceed edge is set to True due to the lack
of a predicate whose last identifier is a[a.len].

Step 3. Event selection strategy: The formulas on the
ignore edges depend on the event selection strategy in use.
Despite a spectrum of strategies that pattern queries may
use, our algorithm determines the formula of an ignore edge
at a state q, θq ignore, in a simple, systematic way:

Strict contiguity: False
Partition contiguity: ¬ (partition condition)
Skip till next match: ¬ (take or begin condition)
Skip till any match: True

As shown above, when strict contiguity is applied, θq ignore

is set to False, disallowing any event to be ignored. If parti-
tion contiguity is used, θq ignore is set to the negation of the
partition definition, thus allowing the events irrelevant to a
partition to be ignored. For skip till next match, θq ignore is
set to the negation of the take or begin condition depending

4 For simplicity of presentation, we omit event type checks in this
example. Such checks can be easily added to the edge formulas.

on the state. Revisit Query 3. As shown in Figure 2(b),
θa[i] ignore is set to ¬θa[i] take at the state a[i], causing all
events that do not satisfy the take condition to be ignored.
Finally, for skip till any match, θq ignore is simply set to
True, allowing any (including relevant) event to be ignored.

Step 4. Time window: Finally, on the begin or proceed
edge to the final state, the algorithm conjoins the within
condition for the entire pattern. This condition is simply a
predicate that compares the time difference between the first
and last selected events against the specified time window.

Optimizations. In our system, the principle for compile-
time optimization is to push stopping and filtering condi-
tions as early as possible so that time and space are not
wasted on non-viable automaton runs. We highlight several
optimizations below:

Step 5. Pushing the time window early: The within
condition, currently placed on the final edge to F , can be
copied onto all take, ignore, and begin edges at earlier states.
This allows old runs to be pruned as soon as they fail to
satisfy the window constraint. Despite the increased number
of predicates in all edge formulas, the benefit of pruning non-
viable runs early outweighs the slight overhead of predicate
evaluation. Figure 2(c) shows θa[i] take and θa[i] ignore after
this optimization for Query 3.

Step 6. Constraining proceed edges: We next optimize a
proceed edge if its current condition is True and the sub-
sequent state is not the final state, which is the case with
Query 3. At the state a[i], this proceed edge causes nonde-
terminism with the take (or ignore) edge, resulting in a new
run created for every event. To avoid non-viable runs, we
restrict the proceed move by “peeking” at the current event
and deciding if it can satisfy the begin condition of the next
state b. We disallow a proceed move in the negative case. An
exception is that when the take and ignore edges at a[i] both
evaluate to False, we would allow an opportunistic move to
the state b and let it decide what can be done next. The
resulting θa[i] proceed is also shown in Figure 2(c).

It is important to note that while our compilation tech-
niques are explained above using pattern queries written in
the SASE+ language [15], all the basic steps (Steps 1-4) and
optimizations (Steps 5-6) are equally applicable to other pat-
tern languages [5, 11, 26].

3.3 Expressibility of NFAb

In this section, we provide an intuitive description of the
expressibility of the NFAb model, while omitting the formal
proofs in the interest of space (detailed proofs are available

in [1]). We briefly describe the set, D(NFAb), that con-

sists of the stream decision problems recognizable by NFAb

automata.

Proposition 3.1. D(NFAb) includes problems that are
complete for nondeterministic space logn (NSPACE[logn])
and is contained in the set of problems recognizable by read-
once-left-to-right NSPACE[logn] machines [32].

The idea behind the proof of the first part of Proposi-
tion 3.1 is that a single Kleene plus in a skip-till-any-match
query suffices to express directed graph reachability which
is complete for NSPACE[logn]. Query 2 is an example of

this. Conversely, an NFAb reads its stream once from left
to right, recording a bounded number of fields, including
aggregates, each of which requires O(logn) bits.

e1 e2 e3 e4 e5 e6 e7 e8 ...
price 100 120 120 121 120 125 120 120
volume 1010 990 1005 999 999 750 950 700

Results

[e3 e4] e6
[e1 e2 e3 e4 e5 e6 e7] e8

Fb

θignore θignore

θtake

θbegin θbeginθproceed
a[1] a[i]

Events [e1 e2 e3 e4 e5] e6R1
R2
R3

a[] b

>

Figure 3: Example pattern matches for Query 3.

We can also prove that any boolean selection-join-aggrega-
tion query (a subset of SQL that relational stream systems

mostly focus on) is in D(NFAb). Furthermore as is well
known, no first-order query even with aggregation can ex-
press graph reachability [21]. Thus, Query 2 is not express-
ible using just selection-join-aggregation. Formally, we have

Proposition 3.2. The set of boolean selection-join-ag-
gregation queries as well as the set of queries in regular lan-
guages are strictly contained in D(NFAb).

Finally, full SQL with recursion [4] expresses all polynomial-
time computable queries over streams [18], so this is a strict

superset ofD(NFAb). However, this language includes many
prohibitively expensive queries that are absolutely unneces-
sary for pattern matching over event streams.

4. RUNTIME COMPLEXITY
Having presented the query evaluation model and compi-

lation techniques, we next turn to the design of a runtime
engine that executes NFAb-based query plans over event
streams. The new abstraction that these query plans present
and the inherent complexity of their evaluation raise signif-
icant runtime challenges. In this section, we describe these
challenges in §4.1 and present analytical results of the run-
time complexity in §4.2. Our runtime techniques for efficient
query evaluation are presented in the next section.

4.1 Key Issues in Runtime Evaluation
The runtime complexity of evaluating pattern queries is

reflected by a potentially large number of simultaneous runs,
some of which may be of long duration.

Simultaneous runs. For a concrete example, consider
Query 3 from Figure 2, and its execution over an event
stream for a particular stock, shown in Figure 3. Two pat-
terns matches R1 and R2 are produced after e6 arrives, and
several more including R3 are created after e8. These three
matches, R1, R2, and R3, overlap in the contained events,
which result from three simultaneous runs over the same
sequence of events.

There are two sources of simultaneous runs. One is that an
event sequence initiates multiple runs from the start state
and a newer run can start before an older run completes.
For example, e1 and e3 in Figure 3 both satisfy θa[1] begin
and thus initiate two overlapping runs corresponding to R1

and R2. A more significant source is the inherent non-
determinism in NFAb, which arises when the formulas of
two edges from the same state are not mutually exclusive,
as described in §3.1. There are four types of nondeterminism
in the NFAb model:

Take-Proceed. Consider the run initiated by e1 in Fig-
ure 3. When e6 is read at the state a[i], this event satisfies
both θa[i] take and θa[i] proceed, causing the run to split by

taking two different moves and later create two distinct yet
overlapping matches R1 and R3. Such take-proceed nonde-
terminism inherently results from the query predicates; it
can occur even if strict or partition contiguity is used.

Ignore-Proceed. When the event selection strategy is re-
laxed to skip till next match, the ignore condition θa[i] ignore

is also relaxed, as described in §3.2. In this scenario, the
ignore-proceed nondeterminism can appear if θa[i] ignore and
θa[i] proceed are not exclusive, as in the case of Query 3.

Take-Ignore. When skip till any match is used, θa[i] ignore

is set to True. Then the take-ignore nondeterminism can
arise at the a[i] state.

Begin-Ignore. Similarly, when skip till any match is used,
the begin-ignore nondeterminism can occur at any singleton
state or the first state of a pair for the Kleenu plus.

Duration of a run. The duration of a run is largely
determined by the event selection strategy in use. When
contiguity requirements are used, the average duration of
runs is shorter since a run fails immediately when it reads
the first event that violates the contiguity requirements. In
the absence of contiguity requirements, however, a run can
stay longer at each state by ignoring irrelevant events while
waiting for the next relevant event. In particular, for those
runs that do not produce matches, they can keep looping at
a state by ignoring incoming events until the time window
specified in the query expires.

4.2 Complexity Analysis
For a formal analysis of the runtime complexity, we in-

troduce the notion of partition window that contains all the
events in a particular partition that a run needs to consider.
Let T be the time window specified in the query and C
be the maximum number of events that can have the same
timestamp. Also assume that the fraction of events that be-
long to a particular partition is p (as a special case, strict
contiguity treats the input stream as a single partition, so
p = 100%). Then the size of the partition window, W , can
be estimated using TCp.

The following two propositions calculate a priori worst-
case upper bounds on the number of runs that a pattern
query can have. The proofs are omitted in this paper. The
interested reader is referred to [1] for details of the proofs.

Proposition 4.1. Given a run ρ that arrives at the state
p[i] of a pair in an NFAb automaton, let rp[i](W) be the num-
ber of runs that can branch from ρ at the state p[i] while
reading W events. The upper bound of rp[i](W) depends on
the type(s) of nondeterminism present:
(i) Take-proceed nondeterminism, which can occur with any
event selection strategy, allows a run to branch in a number
of ways that is at most linear in W .
(ii) Ignore-proceed nondeterminism, which is allowed by skip-
till-next-match or skip-till-any-match, also allows a run to
branch in a number of ways that is at most linear in W .
(iii) Take-ignore nondeterminism, allowed by skip-till-any-
match, allows a run to branch in a number of ways that is
exponential in W .

Proposition 4.2. Given a run ρ that arrives at a single-
ton state, s, or the first state of a pair, p[1], in an NFAb au-
tomaton, the number of ways that it can branch while reading
W events, rs/p[1](W), is at most linear in W when skip-till-
any-match is used, otherwise it is one.

Given an NFAb automaton with states q1, q2, ..., qm = F ,
the number of runs that can start from a given event e,
r̃e, grows with the number of the runs that can branch
at each automaton state except the final state. That is,
r̃e = rq1(W1) rq2(W2) . . . rqm−1(Wm−1), where W1, W2,
..., Wm−1 are the numbers of events read at the states q1,
q1, ..., qm−1 respectively, and

Pm−1
i=1 rqi(Wi) = W . Obvi-

ously, r̃e ≤ |maxm−1
i=1 rqi(Wi)|

m−1
. Then all the runs that

can start from a sequence of events e1, ..., eW is at most

W |maxm−1
i=1 rqi(Wi)|

m−1
. Following Propositions 4.2 and

4.2, we have the following upper bounds on the total number
of runs for a query:

Corollary 4.3. In the absence of skip till any match,
the number of runs that a query can have is at most poly-
nomial in the partition window W , where the exponent is
bounded by the number of states in the automaton. In the
presence of skip till any match, the number of runs can be
at most exponential in W .

These worst case bounds indicate that a naive approach
that implements runs separately may not be feasible. In par-
ticular, each run incurs a memory cost for storing a partial
or complete match in the buffer. Its processing cost consists
of evaluating formulas and making transitions for each input
event. It is evident that when the number of runs is large,
the naive approach that handles runs separately will incur
excessively high overhead in both storage and processing.

Importance of sharing. The key to efficient processing
is to exploit sharing in both storage and processing across
multiple, long-standing runs. Our data structures and algo-
rithms that support sharing, including a shared match buffer
for all runs and merging runs in processing, are described
in detail in the next section. In the following, we note two
important benefits of such sharing across runs.

Sharing between viable and non-viable runs. Viable runs
reach the final state and produce matches, whereas non-
viable runs proceed for some time but eventually fail. Effec-
tive sharing between viable runs and non-viable runs allow
storage and processing costs to be reduced from the total
number of runs to the number of actual matches for a query.
When most runs of a query are non-viable, the benefit of
such sharing can be tremendous.

Sharing among viable runs. Sharing can further occur be-
tween runs that produce matches. If these runs process and
store the same events, sharing can be applied in certain sce-
narios to reduce storage and processing costs to even less
than what the viable runs require collectively. This is espe-
cially important when most runs are viable, rendering the
number of matches close to the total number of runs.

Coping with output cost. The cost to output query
matches is linear in the number of matches. If a query pro-
duces a large number of matches, the output cost is high
even if we can detect these matches more efficiently using
sharing. To cope with this issue, we support two output
modes for applications to choose based on their uses of the
matches and requirements of runtime efficiency. The ver-
bose mode enumerates all matches and returns them sepa-
rately. Hence, applications have to pay for the inherent cost
of doing so. The compressed mode returns a set of matches
(e.g., those ending with the same event) in a compact data
structure, in particular, the data structure that we use to
implement a shared match buffer for all runs. Once pro-
vided with a decompression algorithm, i.e., an algorithm to

e4

e1
a[i]a[1]

e6
b

e3 e4
a[i]a[1]

e6
b

e1
a[i]a[1]

e8
b

e1
a[i]a[1]

e8

b

1.0

1.0

e3
e6

e7 e7

e2

e3

e4

e5

e6

1.0

1.0

1.1

1.1

1.1.0

1.0.0
2.0

2.0.0

(a) buffer for match R1

(b) buffer for match R2
(c) buffer for

match R3
(d) shared, versioned buffer

for R1, R2, R3

e2

e3

e5

e2

e3

e4

e5

e6

Figure 4: Creating a shared versioned buffer for Q3.

retrieve matches from the compact data structure, applica-
tions such as a visualization tool have the flexibility to decide
which matches to retrieve and when to retrieve them.

5. RUNTIME TECHNIQUES
Based on the insights gained from the previous analy-

sis, we design runtime techniques that are suited to the
new abstraction of NFAb-based query plans. In particu-
lar, the principle that we apply to runtime optimization is
to share both storage and processing across multiple runs in
the NFAb-based query evaluation.

5.1 A Shared Versioned Match Buffer
The first technique constructs a buffer with compact en-

coding of partial and complete matches for all runs. We
first describe a buffer implementation for an individual run,
and then present a technique to merge such buffers into a
shared one for all the runs.

The individual buffers are depicted in Figure 4(a)-(c) for
the three matches from Figure 3. Each buffer contains a se-
ries of stacks, one for each state except the final state. Each
stack contains pointers to events (or events for brevity) that
triggered begin or take moves from this state and thus were
selected into the buffer. Further, each event has a prede-
cessor pointer to the previously selected event in either the
same stack or the previous stack. When an event is added
to the buffer, its pointer is set. For any event that trig-
gers a transition to the final state, a traversal in the buffer
from that event along the predecessor pointers retrieves the
complete match.

We next combine individual buffers into a single shared
one to avoid the overhead of numerous stacks and replicated
events in them. This process is based on merging the corre-
sponding stacks of individual buffers, in particular, merging
the same events in those stacks while preserving their pre-
decessor pointers. Care should be taken in this process,
however. If we blindly merge the events, a traversal in the
shared buffer along all existing pointers can produce erro-
neous results. Suppose that we combine the buffers for R1

and R2 by merging e4 in the a[i] stack and e6 in the b stack.
A traversal from e6 can produce a match consisting of e1,
e2, e3, e4, and e6, which is a wrong result. This issue arises
when the merging process fails to distinguish pointers from
different buffers.

To solve the problem, we devise a technique that creates
a shared versioned buffer. It assigns a version number to
each run and uses it to label all pointers created in this
run. An issue is that runs do not have pre-assigned version

 (a) Structure of Computation State for Query 3
 1) version number v; 2) current state q; 3) pointer to recent event in buffer pE;
 4) start time t;
 5) value vector V =

(b) Run ρR1: after e4
1)v=1.0; 2)q=a[i]; 3)pE=e4 in stack a[i];
4)t=e1.time;
5)V = Goog 461 4 999

1 2 3 4

(c) Run ρR2: after e4
1)v=2.0; 2)q=a[i]; 3)pE=e4 in stack a[i];
4)t=e3.time;
5)V = Goog 241 2 999

1 2 3 4

symbol
set()

price
sum()

*
count()

volume
set()

1 2 3 4

a[1] a[i] a[i] a[i]identifier
attribute
operation

Figure 5: Computation state of runs for Q3.

numbers, as the non-determinism at any state can spawn
new runs. In this technique, the version number is encoded
as a dewey number that dynamically grows in the form of
id1(.idj)∗ (1 ≤ j ≤ t), where t refers to the current state
qt. Intuitively, it means that this run comes from the idth

1

initiation from the start state, and the idth
j instance of split-

ting at the state qj from the run that arrived at the state,
which we call an ancestor run. This technique also guaran-
tees that the version number v of a run is compatible with
v′ of its ancestor run, in one of the forms: (i) v contains v′

as a prefix, or (ii) v and v′ only differ in the last digit idt

and idt of v is greater than that of v′.
A shared versioned buffer that combines the three matches

is shown in Figure 4(d). All pointers from an individual
buffer now are labeled with compatible version numbers.
The erroneous result mentioned above no longer occurs, be-
cause the pointer from e6 to e4 with the version number
2.0.0 is not compatible with the pointer from e4 to e3 (in
the a[i] stack) with the version number 1.0.

As can be seen, the versioned buffer offers compact encod-
ing of all matches. In particular, the events and the pointers
with compatible version numbers constitute a versioned view
that corresponds exactly to one match. To return a match
produced by a run, the retrieval algorithm takes the dewey
number of the run and performs a traversal from the most
recent event in the last stack along the compatible pointers.
This process is as efficient as the retrieval of a match from
an individual buffer.

5.2 NFAb Execution with Multiple Runs
Each run of NFAb proceeds in two phases. In the pattern

matching phase, it makes transitions towards the final state
and extends the buffer as events are selected. In the match
construction phase, it retrieves a match produced by this
run from the buffer, as described in the previous section.
Our discussion in this section focuses on algorithms for effi-
cient pattern matching.

5.2.1 Basic Algorithm
We first seek a solution to evaluate individual runs as

efficiently as possible. Our solution is built on the notion of
computation state of a run, which includes a minimum set
of values necessary for future evaluation of edge formulas.
Take Query 3. At the state a[i], the evaluation of the take
edge requires the value avg(a[..i− 1].price). The buffer can
be used to compute such values from the contained events,
but it may not always be efficient. We trade off a little
space for performance by creating a small data structure to
maintain the computation state separately from the buffer.

Figure 5(a) shows the structure of the computation state

for Query 3. It has five fields: 1) the version number of a
run, 2) the current automaton state that the run is in, 3)
a pointer to the most recent event selected into the buffer
in this run, 4) the start time of the run, and 5) a vector V
containing the values necessary for future edge evaluation.
In particular, the vector V is defined by a set of columns,
each capturing a value to be used as an instantiated variable
in some formula evaluation.

Revisit the formulas in Figure 2. We extract the variables
to be instantiated from the right operands of all formulas,
and arrange them in V by the instantiation state, then the
attribute, and finally the operation. For example, the 1st

column in the V vector in Figure 5(a) means that when we
select an event for a[1], store its symbol for later evaluation
of the equivalence test. The 2nd and 3rd columns jointly
compute the running aggregate avg(a[..i−1].price): for each
event selected for a[i], the 2nd column retrieves its price and
updates the running sum, while the 3rd column maintains
the running count. The 4th column stores the volume of the
last selected a[i] to evaluate the formula involving b.

For each run, a dynamic data structure is used to capture
its current computation state. Figure 5(b) and 5(c) depict

the computation state of two runs ρR1 and ρR2 of the NFAb

for Query 3. Their states shown correspond to R1 and R2

after reading the event e4 in Figure 3.
When a new event arrives, each run performs a number of

tasks. It first examines the edges from the current state by
evaluating their formulas using the V vector and the start
time of the run. The state can have multiple edges (e.g.,
take, ignore, and proceed edges at the state a[i]), and any
subset of them can be evaluated to True. If none of the
edge formulas is satisfied, the run fails and terminates right
away; common cases of such termination are failures to meet
the query-specified time window or contiguity requirements.
If more than one edge formula is satisfied, the run splits
by cloning one or two child runs. Then each resulting run
(either the old run or a newly cloned run) takes its corre-
sponding move, selects the current event into the buffer if
it took a take or begin move, and updates its computation
state accordingly.

Finally, we improve the basic algorithm when the non-
overlap output format described in §2 is used. Recall that
this format outputs only one match among those that belong
to the same partition and overlap in time. Since we do
not know a priori which run among the active ones for a
particular partition will produce a match first, we evaluate
all the runs in parallel as before. When a match is actually
produced for a partition, we simply prune all other runs for
the same partition from the system.

5.2.2 Merging Equivalent Runs
To improve the basic algorithm that evaluates runs sepa-

rately, we propose to identify runs that overlap in process-
ing and merge them to avoid repeated work. The idea again
stems from an observation of the computation state. If two
runs, despite their distinct history, have the same computa-
tion state at present, they will select the same set of events
until completion. In this case, we consider these two runs
equivalent . Figure 6 shows an example, where Query 3
is modified by replacing the running aggregate avg() with
max(). The structure of its computation state is modified
accordingly as shown in Part (b). The column in bold is the
new column for the running aggregate max() on a[i]. Parts

(a) Query 3.2: change the aggregate in Query 3 to "a[i].price ≥ max(a[..i-1].price)"

(b) Structure of Computation state
1) v; 2) q; 3) pE; 4) t;

5) values V

6) state merging masks M
 Ma[i]:
 Mb:

symbol
set()

price
max()

volume
set()

1 2 3

a[1] a[i] a[i]

1 1 0
1 0 1

(c) Run ρi: after e4
1)v=1.0; 2)q=a[i]; 3)pE=e4 in stack a[i];
4) t=e1.time; 5) V = Goog 121 999

1 2 3

(d) Run ρj: after e4
1)v=2.0; 2)q=a[i]; 3)pE=e4 in stack a[i];
4)t=e3.time; 5) V = Goog 121 999

1 2 3

Figure 6: An example for merging runs.

(c) and (d) show two runs after reading the event e4 from
the stream in Figure 3: they are both at the state a[i] and
have identical values in V . Their processing of all future
events will be the same and thus can be merged.

The merging algorithm is sketched as follows. The first
task is to detect when two runs become equivalent, which
can occur at any state qt after the start state. The require-
ment of identical V vectors is too stringent, since some val-
ues in V were used at the previous states and are no longer
needed. In other words, only the values for the evaluation
at qt and its subsequent states need to be the same. To do
so, we introduce an extra static field M , shown in Figure
6(b), that contains a set of bit masks over V . There is one
mask for each state qt, and the mask has the bit on for each
value in V that is relevant to the evaluation at this state. At
runtime, at the state qt we can obtain all values relevant to
future evaluation, denoted by V[t...], by applying the mask
(Mqt ∨Mqt+1 ∨ . . .) to V . Two runs can be merged at qt if
their V[t...] vectors are identical.

Another task is the creation of a combined run, whose
computation state will be extended with all the version num-
bers and start times of the merged runs. The version num-
bers of the merged runs are cached so that later in the match
construction phase, we can identify the compatible predeces-
sor pointers for these runs in the shared buffer and retrieve
their matches correctly. We also need to keep the start times
of the merged runs to deal with expiration of runs. Recall
that a run expires when it fails to meet the query-specified
time window. Since the merged runs may have different
start times, they can expire at different times in execution.
To allow the combined run to proceed as far as possible,
we set the start time of the combined run as that of the
youngest merged one, i.e., the one with the highest start
time. This ensures that when the combined run expires, all
its contained runs expire as well. Finally, when the combine
run reaches the final state, match construction is invoked
only for the contained runs that have not expired.

5.2.3 Backtrack Algorithm
For purposes of comparison, we developed a third algo-

rithm called the backtrack algorithm for evaluating pattern
queries. This algorithm was inspired by a standard imple-
mentation for pattern matching over strings and its adap-
tation in [26] as a basic execution model for event pattern
matching. The basic idea is that we process a single run
per partition at a time, which we call the singleton run
for the partition. The singleton run continues until either
it produces a match or fails, while the evaluation of any
runs created during its processing, e.g., as a result of non-
determinism, is postponed. If the singleton run fails, then
we backtrack and process another run whose evaluation was

Figure 7: An example for the Backtrack algorithm.

previously postponed for the partition. If the singleton run
produces a match, we may backtrack depending on the out-
put format: we backtrack if all results are required; we do
not if only non-overlapping results are needed.5

We adapted the implementation of our basic algorithm de-
scribed in §5.2.1 to implement the backtrack algorithm. We
highlight the changes through the example given in Figure
7. In this example, ρi represents run i, qj state j, and ek an
event that occurs at time k. We describe how the backtrack
algorithm evaluates the event stream e1, e2, e3, e4, e5, e6 for
a generic query with a single Kleene plus component:

• e1 creates a new run, ρ1, at the start state, q0. ρ1

becomes the singleton run.
• e3 results in a nondeterministic move at q1. We create

run ρ2 and add it together with the id of its current
state (q1) and the id of the current event (e3) to a stack
holding all postponed runs. ρ1 remains as the singleton
run because it is proceeding to the next NFAb state.
• Process ρ1 until it fails with event e4 at state q2.
• Backtrack by popping the most recently created run,
ρ2 in this example, from the stack. Resume processing
ρ2 (the new singleton run) at state id q1 by reading
events in the buffer starting from e3.
• ρ2 produces a match with e6.

If we view the creation of runs as a tree that expands dur-
ing event processing, the backtrack algorithm processes runs
in a depth first search manner. That is, we process the sin-
gleton run until it either fails or produces a result and then
we backtrack to the most recent run that was created during
the processing of the singleton run. Our basic algorithm, on
the other hand, expands the “run tree” in a breadth first
search manner; it creates and evaluates all runs at once.

5.3 Memory Management
There are a number of data structures that grow in pro-

portion to the size of the input event stream. Since the
input event stream is infinite, consistent performance over
time can only be achieved by actively maintaining these data
structures. To this end, we prune data structures incremen-
tally and reuse expired data structures whenever possible.

There are two key data structures that we actively prune
using the time window during runtime. One is the shared
match buffer. After each event is processed, we use the
timestamp of this event and the time window to determine
the largest timestamp that falls outside the window, called
the pruning timestamp. We use the pruning timestamp
as a key to perform a binary search in each stack of the

5Regular expression matching in network intrusion detection sys-
tems (NIDS) [19, 35] is also relevant to event pattern matching.
However, we did not choose to compare to NIDS because reg-
ular expressions can express only a subset of event queries, as
stated in §3.3, and most NIDS use deterministic finite automata
(DFA) that would explode to an exponential size when handling
non-determinism [35], which abound in event queries.

match buffer. The binary search determines the position of
the most recent event that falls outside the window. We
prune the events (more precisely, container objects for those
events) at and before this position from the stack. Similarly,
we prune events from a global event queue in the system us-
ing the pruning timestamp.

To further optimize memory usage, we reuse frequently
instantiated data structures. As objects are purged from
the match buffer, we add them to a pool. When a new stack
object is requested, we first try to use any available objects
in the pool and only create a new object instance when the
pool is empty. Recycling stack objects as such limits the
number of object instantiations and quiesces garbage collec-
tion activity. Similarly, we maintain a pool for NFAb run
objects, i.e., the dynamic data structures that maintain the
computation state of runs. Whenever an NFAb run com-
pletes or fails, we add it to a pool to facilitate reuse.

6. PERFORMANCE EVALUATION
We have implemented all the query evaluation techniques

described in the previous sections in a Java-based proto-
type system containing about 25,000 lines of source code.
In this section, we present results of a detailed performance
study using our prototype system. These results offer in-
sights into the effects of various factors on performance and
demonstrate the significant benefits of sharing.

To test our system, we implemented an event generator
that dynamically creates time series data. We simulated
stock ticker streams in the following experiments. In each
stream, all events have the same type, stock, that con-
tains three attributes, symbol, price, volume, with respec-
tive value ranges [1-2], [1-1000], [1-1000]. The price of those
events has the probability p for increasing, 1−p

2
for decreas-

ing, and 1−p
2

for staying the same. The values of p used in
our experiments are shown in Table 1. The symbol and vol-
ume follow the uniform distribution.6 We only considered
two symbols; adding more symbols does not change the cost
of processing each event (on which our measure was based)
because an event can belong to only one symbol.

Table 1: Workload Parameters
Parameter Values used

Probprice increase 0.7, 0.55
ES, event (s2) partition-contiguity
selection strategy (s3) skip-till-next-match
Pa[i], iterator predicate (p1) True;
used in Kleene closure (p2) a[i].price > a[i− 1].price;

(p3) a[i].price > aggr(a[..i-1].price)
aggr = max | min | avg

W , partition window size 500-2000 events
Result output format all results (default),

non-overlapping results

Queries were generated from a template “ pattern(stock+
a[], stock b) where ES {[symbol] ∧ a[1].price %500==0
∧ Pa[i] ∧ b.volume <150} within W”, whose parameters
are explained in Table 1. For event selection strategy, we
considered partition contiguity (s2) and skip till next match
(s3) because they are natural choices for the domain of stock
tickers. The iterator predicate used in Kleene closure, Pa[i],
was varied among three forms as listed in Table 1. Note that

6The distributions for price and volume are based on our obser-
vations of daily stock tickers from Google Finance, which we use
to characterize transactional stock tickers in our simulation.

take-proceed non-determinism naturally exists in all queries:
for some event e, we can both take it at the state a[i] based
on the predicate on price, and proceed to the next state
based on the predicate on volume. The partition window
size W (defined in §4.2) was used to bound the number of
events in each partition that are needed in query processing.

The performance metric is throughput, i.e., the number of
events processed per second. In all experiments, throughput
was computed using a long stream that for each symbol,
contains events of size 200 times the partition window size
W . All measurements were obtained on a workstation with
a Pentium 4 2.8 Ghz CPU and 1.0 GB memory running Java
Hotspot VM 1.5 on Linux 2.6.9. The JVM allocation pool
was set to 750MB.

6.1 Effects of Various Factors
To understand various factors on performance, we first

ran experiments using the shared match buffer (§5.1) and
the basic algorithm that handles runs separately (§5.2.1).
In these experiments, the probability of price increase in
the stock event stream is 0.7.

Expt 1: varying iterator predicate and event selec-
tion strategy (ES ∈(s2, s3), Pa[i] ∈ (p1, p2, p3), W=500).
In this experiment, we study the behavior of Kleene closure
given a particular combination of the iterator predicate (p1,
p2, or p3) and event selection strategy (s2 or s3). For stock
tickers with an overall trend of price increase, p3 using the
aggregate function max performs similarly to p2, and p3 us-
ing avg is similar to p3 using min. Hence, the discussion of
p3 below focuses on its use of min.

Figure 8(a) shows the throughput measurements. The
X-axis shows the query types sorted first by the type of
predicate and then by the event selection strategy. The Y-
axis is on a logarithmic scale. These queries exhibit different
behaviors, which we explain using the profiling results shown
in the first two rows of Table 2.

Table 2: Profiling Results for Expt1
p1s2 p1s3 p2s2 p2s3 p3s2 p3s3

match length 250 250 4.5 140 250 250
num. runs/time step 2 2 0.01 2 2 2

matching cost(%) 61 61 100 67 67 66
construction cost(%) 39 39 0 33 33 34

For the predicate p1 which is set to True, s2 and s3 per-
form the same because they both select every event in a par-
tition, producing matches of average length 250. Simulta-
neous runs exist due to multiple instances of initiation from
the start state and take-proceed non-determinism, yielding
an average of 2 runs per time step (we call the cycle of pro-
cessing each event a time step).

For p2 that requires the price to strictly increase, s2 and
s3 differ by an order of magnitude in throughput. Since p2

is selective, s2 tends to produce very short matches, e.g., of
average length 4.5, and a small number of runs, e.g., 0.01
run per time step. In contrast, the ability to skip irrele-
vant events makes s3 produce longer matches, e.g., of aver-
age length 140. Furthermore, s3 still produces 2 runs per
time step: due to the ignore-proceed nondeterminism that
s3 allows (but s2 does not), a more selective predicate only
changes some runs from the case of take-proceed nondeter-
minism to the case of ignore-proceed.

Finally, p3 requires the price of the next event to be greater
than the minimum of the previously selected events. This

predicate has poor selectivity and leads to many long matches
as p1. As a result, the throughput was close to that of p1

and the difference between s2 and s3 is very small.
In summary, selectivity of iterator predicates has a great

effect on the number of active runs and length of query
matches, hence the overall throughput. When predicates
are selective, relaxing s2 to s3 can incur a significant addi-
tional processing cost.

We also obtained a cost breakdown of each query into the
pattern matching and pattern construction components, as
shown in the last two rows of Table 2. As can be seen, pat-
tern matching is the dominant cost in these workloads, cov-
ering 60% to 100% of the total cost. Reducing the matching
cost is our goal of further optimization.

Expt 2: varying partition window size (ES ∈(s2,
s3), Pa[i] ∈ (p1, p2, p3)). The previous discussion was based
on a fixed partition window size W . We next study the effect
of W by varying it from 500 to 2000. The results are shown
in Figure 8(b). We omitted the result for p1s2 in the rest of
the experiments as it is the same as p1s3.

The effect of W is small when a selective predicate is used
and the event selection strategy is s2, e.g., p2s2. However,
the effect of W is tremendous if the predicates are not se-
lective, e.g., p1 and p3, and the event selection strategy is
relaxed to s3. In particular, the throughput of p1s3 and p3s3
decreases quadratically. Our profiling results confirm that
in these cases, both the number of runs and the length of
each match increase linearly, yielding the quadratic effect.

We further explore the efficiency of our algorithm by tak-
ing into account the effect of W on the query output complex-
ity, defined as

P
each match(length of the match). It serves

as an indicator of the amount of computation needed for a
query. Any efficient algorithm should have a cost linear in
it. Figure 8(c) plots the processing cost against the output
complexity for each query, computed as W was varied. It
shows that our algorithm indeed scales linearly. The con-
stants of different curves vary naturally with queries. The
effect of further optimization will be to reduce the constants.

6.2 Basic versus Backtrack Algorithms
Recall from §5.2 that our basic algorithm evaluates all

runs simultaneously when receiving each event. In contrast,
the backtrack algorithm, popular in pattern matching over
strings and adapted in [26] for event pattern matching, eval-
uates one run at a time and backtracks to evaluate other runs
when necessary. We next compare these two algorithms.

Expt3: all results. In this experiment we compare the
two algorithms using the previous queries and report the
results in Figure 8(d). These results show that the through-
put of our basic algorithm is 200 to 300 times higher than
the backtrack algorithm across all queries except for p2s2,
where the basic algorithm achieves a factor of 1.3 over the
backtrack algorithm.

The performance of the backtrack algorithm is largely at-
tributed to repeated backtracking to execute all the runs
and produce all the results. The throughput results can be
explained using the average number of times that an event
is reprocessed. The backtrack algorithm reprocesses many
events, e.g., an average 0.6 time for each event for queries
using s3, resulting in their poor performance. In contrast,
our basic algorithm never reprocesses any event. The only
case of backtrack where this number is low is p2s2 with short
duration of runs, yielding comparable performance. As can

 100000

 10000

 1000

 100
p3-s3p3-s2p2-s3p2-s2p1-s3p1-s2

T
h
r
o
u
g
h
p
u
t
(
e
v
e
n
t
s
/
s
e
c
)

Query Type

(a) Throughput for Basic (Expt1)

 100

 1000

 10000

 100000

 2000 1500 1000 500

T
h
r
o
u
g
h
p
u
t

(
e
v
e
n
t
s
/
s
e
c
)

Partition Window Size

p2-s2
p2-s3
p1-s3
p3-s2
p3-s3

(b) Throughput for Basic (Expt2)

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

C
o
s
t

f
o
r

W

e
v
e
n
t
s

(
s
e
c
)

Query Output Complexity (x1000)

p1-s3
p2-s2
p2-s3
p3-s2
p3-s3

(c) Cost vs Output Complexity (Expt2)

10

100

1000

10000

100000

1000000

p1-s3 p2-s2 p2-s3 p3-s2 p3-s3

Query Type

Th
ro

ug
hp

ut
 (E

ve
nt

s/
Se

c)

Basic
Backtrack

(d) Basic vs Backtrack, all results (Expt3)

100

1000

10000

100000

1000000

p3-s2 p3-s3 p3*-s2 p3*-s3
Query Type

Th
ro

ug
hp

ut
 (E

ve
nt

s/
Se

c)

Basic
Backtrack

(e) Basic vs Backtrack, non-overlap (Expt4)

1000

10000

100000

1000000

p1-s3 p2-s2 p2-s3 p3-s2 p3-s3
Query Type

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c) Basic
Merging

(f) Benefit of Merging (Expt5)

 1

 1.5

 2

 2.5

 500 1000 1500 2000

T
h
r
o
u
g
h
p
u
t

G
a
i
n

Partition Window Size

p1-s3
p2-s3
p3-s3

(g) Benefit of Merging (Expt6)

Figure 8: Experimental Results.

be seen, if all results are to be generated, our basic algorithm
is a much better choice.

Expt4: non-overlapping results. We next compare
these two algorithms when only non-overlapping results are
required. The difference from the case of all results is that
we may not need to examine all simultaneous runs to pro-
duce such results. However, it is unknown a prior which
run among the active ones will produce a result first. In
this experiment, we instrumented both algorithms to return
shortest non-overlapping results.

We first reran all previous queries with non-overlap.
These queries exhibit similar trends for the two algorithms,
as illustrated using p3s2 and p3s3 in the 1st and 2nd groups
of bars in Figure 8(e). We observed that this set of queries
are ideal for the backtrack algorithm since little backtrack-
ing is needed. This is because the last predicate b.volume
<150 is not selective given uniform distribution of volume
in events. Hence, once a run starts, it is likely to produce a
match during a short period of time, eliminating the need to
backtrack. Our basic algorithm runs fast for a similar rea-
son: even though it executes multiple runs at the same time,
the quick generation of a result allows it to prune other runs,
hence reducing its overhead of executing multiple runs.

We next modified the query workload so that a random
run is less likely to produce a result—requiring each algo-
rithm to search through runs to generate the result. To do
so, we extended the two queries using predicate p3 with an-
other pattern component: pattern(stock+ a[], stock b,
stock c), where c.price > a[1].price∧c.price < a[a.len].price.
We denote the modified queries using p∗3 and show its re-
sults using the 3rd and 4th groups of bars in Figure 8(e). In
particular, the basic algorithm yields an order of magnitude
higher throughput than the backtrack algorithm for p∗3s3. In
this workload, c’s predicates are selective so most runs fail
at this state, causing the backtrack algorithm to repeatedly
invoke backtracking and try other runs.

6.3 NFAb with Merging of Runs
We showed in the above experiments that our basic algo-

rithm provides comparable or better performance than the
backtrack algorithm in most workloads tested. In the fol-
lowing experiments, we omit the backtrack algorithm and
extend the basic algorithm with merging of equivalent runs.

Expt 5: merging runs of Expt 1. In this experiment,
we applied the merging algorithm to the queries in Expt 1.

Figure 8(f) shows the results; it also includes the numbers
of the basic algorithm from Figure 8(a) for comparison. As
can be seen, the merging algorithm yields significant per-
formance gains over the basic algorithm for all the queries
tested, e.g., achieving a factor of 1.5 for p1s3, 1.4 for p2s3,
and 1.5 for p3s3. It ran all of the expensive queries, which
either use less selective predicates such as p1 and p3 or the
event selection strategy s3, at over 10,000 events per second.

Expt 6: merging runs of Expt 2. We further applied
merging to all the queries in Expt 2 when the partition win-
dow size W was varied. We focused on the three queries us-
ing s3, namely, p1s3, p2s3, and p3s3, because they are more
expensive than (if not the same as) their counterparts using
s2. Recall that the partition window size affects query out-
put complexity; a larger size leads to more query matches
and longer matches, hence a higher sequence construction
cost. Since sequence construction is common to both the
basic and merging algorithms, to better understand their
differences we turned off sequence construction in this ex-
periment and measured only the cost of sequence matching.

Figure 8(g) shows the benefits of merging in throughput
gain, defined as new throughput/old throughput. As can be
seen, merging offers remarkable overall throughput gains,
ranging from a factor of 1.4 to 2.1. Results of the three
queries can be further explained using two factors shown
in Table 3: the sharing opportunity, captured by the per-
centage of runs that were successfully merged in columns
2 to 4 of the table, and the overhead of maintaining the
match buffer, captured by the total cost of buffer updates
in columns 5 to 7.

These three queries represent interesting combinations of
these two factors. The predicate p1 (= true) allows the
most sharing opportunity: all of the overlapping runs for
the same partition can be merged. However, p1 leads to
long query matches, hence a high overhead of maintaining
the match buffer as events are selected. The predicate for
price strictly increasing, p2, still allows significant sharing:
as soon as two runs have the same price from the last selected
events, they can be merged. In addition, p2 is selective so the
buffer update cost is relatively low. As a result, p2 achieves
higher throughput gains for large values of W . Finally, the
predicate p3 requires two runs to agree on the minimum
price in order to be merged, offering a somewhat less sharing
opportunity. Since it is not selective, it also has a high buffer
update cost as p1. Combining both factors, p3 achieves only
limited throughput gains for large values of W .

Table 3: Profiling Results for Expt6
Runs merged (%) Buffer update cost (sec)

W p1s3 p2s3 p3s3 p1s3 p2s3 p3s3
500 47.9 47.8 47.8 11.9 5.4 12.0
1000 50.9 48.3 45.8 175.8 62.3 205.4
1500 66.6 55.7 44.9 363.6 132.6 454.2
2000 75.3 60.4 50.6 670.3 221.3 840.4

Other experiments. To explore the effects of differ-
ent data characteristics, we also varied the probability p for
stock price increase in the event stream. We briefly summa-
rize the results below. When a smaller value of p is used,
e.g., p = 0.55, the queries using predicate p1 have the same
performance because they simply select every event in each
partition. In comparison, the queries using predicates p2

and p3 produce fewer matches and hence all achieve higher
throughput numbers. The advantage of our basic algorithm

over backtrack still holds, but with a smaller margin. On
the other hand, the difference in throughput between the
merging and basic algorithms is even higher. This is because
fewer matches mean a smaller cost of sequence construction,
and the benefit of merging is magnified in the presence of a
low sequence construction cost common to both algorithms.

7. RELATED WORK
Much related work has been covered in previous sections.

We discuss broader areas of related work below.
Event languages for active databases [14, 13, 6, 23, 22, 36]

offer temporal operators including sequencing and Kleene
closure, but do not support complex predicates to compare
events. As we showed in this paper, such predicates are cru-
cial in pattern definition. Those languages also lack efficient
implementation over high-volume streams.

Traditional pub/sub systems [2, 12] offer predicate-based
filtering of individual events. Our system significantly ex-
tends them with the ability to match complex patterns across
multiple events. Cayuga [10, 11] supports patterns with
Kleene closure and event selection strategies including par-
tition contiguity and skip till next match, but does not al-
low output of complete matches. In comparison, our sys-
tem supports more event selection strategies and output of
complete matches both in the evaluation model and in run-
time optimization. The Cayuga implementation focuses on
multi-query optimization, which is directly applicable when
our system is extended to handle multiple queries.

Sequence databases [27, 26] offer SQL extensions for se-
quence data processing. SEQUIN [27] uses joins to specify
sequence operations and thus cannot express Kleene closure.
SQL-TS [26] adds new constructs SQL to handle Kleene clo-
sure, but restricts pattern matching to only contiguous tu-
ples in each relevant partition. Its optimization based on
predicate containment can be integrated into our system for
workloads that exhibit such containment relationships.

Many recent event systems [16, 25, 31, 34] offer relatively
simple event languages and stream-based processing. These
systems lack important constructs for pattern matching such
as Kleene closure and choices of event selection strategies.
In particular, our work significantly extends prior work [34]
with Kleene closure and event selection strategies, two fea-
tures that fundamentally complicate event pattern match-
ing, a formal rich model NFAb for evaluation and theoretical
analysis, and a suite of sharing techniques. The evaluation
framework of [34] is further extended to handle out-of-order
events [20]. SASE+ [15] provides a rich language for pattern
matching but lacks implementation details.

There have also been theoretical studies on the underly-
ing model of complex event processing. CEDR [5] proposes
a new temporal model that captures the duration of events
and analyzes the consistency of event processing for out-
of-order streams. A related study [33] designs a temporal
model for such events that has a bounded representation of
timestamps and offers associativity of the sequencing oper-
ator. These results can be applied to guide the extension of
our system to handle events with duration.

8. CONCLUSIONS
In this paper, we studied the evaluation and optimization

of pattern queries over event streams. We rigorously defined
a query evaluation model, the NFAb automata, analyzed

its expressibility, and provided compilation techniques for
building query plans based on this model. We also analyzed
the runtime complexity and developed sharing techniques
for efficient runtime evaluation. Our system could process
tens of thousands of events per second for fairly expen-
sive queries and offers much higher throughput for cheaper
queries. Our sharing techniques also produced remarkable
performance benefits, ranging from 40% to 110%, over a
spectrum of query workloads.

We plan to continue our research in a few directions. We
will extend our system to handle out-of-order events by aug-
menting the NFAb model with techniques including invalida-
tion and re-computation: The NFAb proceeds as before and,
when receiving an out-of-order event, invalidates some of
the existing runs affected by the event and recomputes from
valid intermediate steps. In addition, our current implemen-
tation of queries with negation and composition is strictly
based on the query semantics. We will explore new oppor-
tunities for optimization that are particularly suitable for
these queries. Finally, we will study robust pattern match-
ing over uncertain events that are produced from a variety
of sensor networks.

9. REPEATABILITY ASSESSMENT RESULT
Figures 8(a), 8(b), 8(d), 8(e) have been verified by the

SIGMOD repeatability committee.

10. REFERENCES
[1] J. Agrawal, Y. Diao, et al. Efficient pattern matching

over event streams. Technical Report 07-63, University
of Massachusetts Amherst, 2007.

[2] M. K. Aguilera, R. E. Strom, et al. Matching events in
a content-based subscription system. In PODC, 53–61,
1999.

[3] A. Arasu, S. Babu, et al. CQL: A language for
continuous queries over streams and relations. In
DBPL, 1–19, 2003.

[4] F. Bancilhon and R. Ramakrishnan. An amateur’s
introduction to recursive query processing strategies.
In SIGMOD, 16–52. 1986.

[5] R. S. Barga, J. Goldstein, et al. Consistent streaming
through time: A vision for event stream processing. In
CIDR, 363–374, 2007.

[6] S. Chakravarthy, V. Krishnaprasad, et al. Composite
events for active databases: Semantics, contexts and
detection. In VLDB, 606–617, 1994.

[7] S. Chandrasekaran, O. Cooper, et al. TelegraphCQ:
Continuous dataflow processing for an uncertain
world. In CIDR, 2003.

[8] M. Cherniack, H. Balakrishnan, et al. Scalable
distributed stream processing. In CIDR, 2003.

[9] Coral8. http://www.coral8.com/.

[10] A. J. Demers, J. Gehrke, et al. Towards expressive
publish/subscribe systems. In EDBT, 627–644, 2006.

[11] A. J. Demers, J. Gehrke, et al. Cayuga: A general
purpose event monitoring system. In CIDR, 2007.

[12] F. Fabret, H.-A. Jacobsen, et al. Filtering algorithms
and implementation for very fast publish/subscribe. In
SIGMOD, 115–126, 2001.

[13] S. Gatziu and K. R. Dittrich. Events in an active
object-oriented database system. In Rules in Database
Systems, 23–39, 1993.

[14] N. H. Gehani, H. V. Jagadish, et al. Composite event
specification in active databases: Model &
implementation. In VLDB, 327–338, 1992.

[15] D. Gyllstrom, J. Agrawal, et al. On supporting kleene
closure over event streams. In ICDE, 2008. Poster.

[16] L. Harada and Y. Hotta. Order checking in a CPOE
using event analyzer. In CIKM, 549–555, 2005.

[17] J. E. Hopcroft, R. Motwani, and J. D. Ullman.
Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2006.

[18] N. Immerman. Descriptive Complexity. Graduate
Texts in Computer Science. Springer, New York, 1999.

[19] S. Kumar, B. Chandrasekaran, et al. Curing regular
expressions matching algorithms from insomnia,
amnesia, and acalculia. In ANCS, 155–164, 2007.

[20] M. Li, M. Liu, et al. Event stream processing with
out-of-order data arrival. In Int’l Conf. on Distributed
Computing Systems Workshops, page 67, 2007.

[21] L. Libkin and L. Wong. Unary quantifiers, transitive
closure, and relations of large degree. In Proc. of the
15th Annual Symposium on Theoretical Aspects of
Computer Science (STAC), 183–193, 1998.

[22] D. F. Lieuwen, N. H. Gehani, et al. The Ode active
database: Trigger semantics and implementation. In
S. Y. W. Su, editor, ICDE, 412–420, 1996.

[23] R. Meo, G. Psaila, et al. Composite events in chimera.
In EDBT, 56–76, 1996.

[24] R. Motwani, J. Widom, et al. Query processing,
approximation, and resource management in a data
stream management system. In CIDR, 2003.

[25] S. Rizvi, S. R. Jeffery, et al. Events on the edge. In
SIGMOD, 885–887, 2005.

[26] R. Sadri, C. Zaniolo, et al. Expressing and optimizing
sequence queries in database systems. ACM Trans.
Database Syst., 29(2):282–318, 2004.

[27] P. Seshadri, M. Livny, et al. The design and
implementation of a sequence database system. In
VLDB, 99–110, 1996.

[28] Pattern matching in sequences of rows. SQL change
proposal. http://asktom.oracle.com/tkyte/
row-pattern-recogniton-11-public.pdf. 2007.

[29] StreamBase. http://www.streambase.com/.

[30] Truviso. http://www.truviso.com/.

[31] F. Wang and P. Liu. Temporal management of RFID
data. In VLDB, 1128–1139, 2005.

[32] I. Wegener. Branching programs and binary decision
diagrams: theory and applications. Society for
Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2000.

[33] W. M. White, M. Riedewald, et al. What is ”next” in
event processing? In PODS, 263–272, 2007.

[34] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD,
407–418, 2006.

[35] F. Yu, Z. Chen, et al. Fast and memory-efficient
regular expression matching for deep packet
inspection. In ANCS, 93–102, 2006.

[36] D. Zimmer and R. Unland. On the semantics of
complex events in active database management
systems. In ICDE, 392–399, 1999.

