
Exception Analysis and Points-to Analysis: Better Together

Martin Bravenboer
Department of Computer Science

University of Massachusetts, Amherst
martin.bravenboer@acm.org

Yannis Smaragdakis
Department of Computer Science

University of Massachusetts, Amherst
yannis@cs.umass.edu

ABSTRACT
Exception analysis and points-to analysis are typically done in
complete separation. Past algorithms for precise exception anal-
ysis (e.g., pairing throw clauses with catch statements) use pre-
computed points-to information. Past points-to analyses either un-
soundly ignore exceptions, or conservatively compute a crude ap-
proximation of exception throwing (e.g., considering an exception
throw as an assignment to a global variable, accessible from any
catch clause). We show that this separation results in significant
slowdowns or vast imprecision. The two kinds of analyses are inter-
dependent: neither can be performed accurately without the other.
The interdependency leads us to propose a joint handling for per-
formance and precision. We show that our exception analysis is
expressible highly elegantly in a declarative form, and can apply to
points-to analyses of varying precision. In fact, our specification of
exception analysis is “fully precise”, as it models closely the Java
exception handling semantics. The necessary approximation is pro-
vided only through whichever abstractions are used for contexts
and objects in the base points-to analysis. Our combined approach
achieves similar precision relative to exceptions (exception-catch
links) as the best past precise exception analysis, with a runtime of
seconds instead of tens of minutes. At the same time, our analysis
achieves much higher precision of points-to information (an aver-
age of half as many values for each reachable variable for most of
the DaCapo benchmarks) than points-to analyses that treat excep-
tions conservatively, all at a fraction of the execution time.

Categories and Subject Descriptors. F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages—Program Analysis; D.1.6 [Programming Techniques]:
Logic Programming

General Terms. Algorithms, Languages, Performance

1. INTRODUCTION AND MOTIVATION
Static program analysis is a domain of mutual recursion. A well-

known scenario is that of points-to analysis and call-graph con-
struction. Points-to analysis computes what objects (represented by
a static abstraction, such as their allocation site) a program variable
can point to. Call-graph construction computes which methods
can call which others. To compute accurate points-to information,
we need call-graph information—for instance, an assignment “x =
y.f()” necessitates knowing what methods can be called, to find

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$10.00.

what objects x can point to. Similarly, computing the call-graph re-
quires having points-to information: knowing what objects a vari-
able can point to is necessary for resolving virtual method calls.
The benefits of defining a joint analysis that computes points-to
and call-graph information gradually together (commonly called
on-the-fly call-graph construction) have been well documented in
past precision studies [19].

In this paper, we show that a different kind of mutually recur-
sive definition has an even more significant impact on the precision
and speed of the defined analyses. Exception analysis (i.e., a com-
putation of what control-flow is induced by throwing exceptions)
and points-to analysis are mutually recursive in object-oriented lan-
guages. The logical mutual recursion between the two analyses is
not hard to see conceptually. First, exception analysis depends on
points-to information mainly because call-graph information deter-
mines which exception handlers can be in the dynamic scope of a
thrown exception. Other dependencies also exist—e.g., in a clause
“throw e;” the points-to information of variable e determines what
object can be thrown, which also determines which catch clauses
can be executed. Second, points-to information directly depends
on exception analysis. Exceptions change the control flow of a pro-
gram, so they enable or disable object assignments. Furthermore,
throwing an exception directly introduces an object assignment:
that of the thrown object being assigned to the formal variable in
the catch clause.

Motivation. From a practical standpoint, integrating precise han-
dling of exceptions when performing points-to analysis is a vir-
tual necessity. In the past, practical points-to analysis algorithms
have relied on conservative approximations of exception handling
[17, 19]. (We present a full treatment of related work in Section 7
but discuss the closest comparables here.) The well-known points-
to analysis libraries S [17] and P [16] both model excep-
tion throwing as an assignment to a single global variable for all
exceptions thrown in a program. The variable is then read at the site
of an exception catch. This approach is highly imprecise because
it ignores the information about what exceptions can propagate to
a catch site. Conservative exception handling is a dominant fac-
tor in precision metrics for these points-to frameworks, especially
for more precise points-to analyses. For example, we measured
the average number of object abstractions that a reachable variable
can point to, as computed by a 1-object-sensitive analysis for the
DaCapo antlr benchmark. Conservative exception handling (as in
S or P) yields 21 objects per variable, while our precise
exception handling computes just 10 objects per variable. That is,
imprecise exception handling alone is responsible for a 2× worse
precision for the points-to analysis! (Full results for more programs
and metrics are reported in Section 5.)

S and P’s purpose is to perform a points-to analysis
and only incidentally deal with exceptions, as required for sound-
ness. For instance, neither of them explicitly computes excep-
tion information (e.g., a list of exceptions that can be thrown by a

method). On the opposite side are precise exception handling algo-
rithms proposed in past work [8–10]. Fu and Ryder’s “exception-
chain analysis” [9] is representative, and probably the most ad-
vanced. Such specialized exception analyses work as a second
step, on top of a pre-computed points-to analysis and call-graph
(first step). Fu and Ryder’s analysis works on top of S, with
its conservative modeling of exceptions, as discussed. Thus, this
approach models the interdependencies of the points-to and excep-
tion analyses crudely, but then performs an exception analysis that
is fully precise, to the extent that the result is not affected by the
noise added to the points-to analysis in the first step. Even when
the precision of this exception analysis is not affected, the run-time
overhead of such a separate analysis is significant: Fu et al. report
exception analysis times measured in minutes for computing a sin-
gle exception-catch link. Furthermore, we have the paradox that
the precise exception analysis of the second step has to suffer the
cost of first computing the imprecise call-graph (we show that this
can be up to 6× larger than the precise call-graph), which is due to
the imprecise exception analysis of the first step!

Our approach. To address these shortcomings, we propose a joint
exception analysis and points-to analysis (also with on-the-fly call-
graph construction) for Java. Perhaps surprisingly, not much past
work has concentrated on points-to analysis in the presence of ex-
ceptions, except to theoretically characterize the worst case com-
plexity of the fully precise versions of the problem [3]. We intro-
duce points-to analysis in the presence of exceptions using a mod-
ular specification. Indeed, our exception analysis logic on its own
is “as precise as can be” since it fully models the Java exception
handling semantics. The approximation introduced is only due to
the static abstractions used for contexts and objects in the points-to
analysis. Thus, our exception analysis is specified in a form that ap-
plies to points-to analyses of varying precision, and the exception
analysis transparently inherits the points-to analysis precision.

Our joint analysis is implemented in the D pointer analysis
framework for Java.1 D builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-based lan-
guage for defining (recursive) relations. In other work [1], we show
how D carries the declarative approach further than past work
by describing the full end-to-end analysis in Datalog and optimiz-
ing aggressively through exposition of the representation of rela-
tions (e.g., indexing) to the Datalog language level. As a result, the
declarative pointer analysis implementations of D outperform
the previous state of the art in context-sensitive pointer analysis by
an order of magnitude.

In summary, our paper makes the following contributions:

• We present a modular exception analysis specification, applica-
ble to a variety of base points-to analyses and operating mutually
recursively.

• We experimentally demonstrate the benefits of joint exception
and points-to analysis.

- Compared to past points-to analyses with conservative excep-
tion handling, we achieve much higher precision, especially for
context-sensitive analyses. We demonstrate this precision in
metrics such as the size of the points-to sets (which, for the most
precise analysis, is reduced in half on most analyzed programs).

- Compared to past precise exception analyses, we achieve com-
parable precision in a small fraction of the analysis time—in the
order of 90sec instead of 4,000+sec.

1Available at http://doop.program-analysis.org

2. BACKGROUND: POINTS-TO ANALY-
SIS IN DATALOG

The D framework expresses points-to analysis algorithms in
Datalog, a declarative language. The use of Datalog enables elegant
and modular analysis specifications, but also easy illustration of
insights: the declarative nature of our algorithm is a large reason
why we are able to illustrate it so succinctly in the next section.
As we show in other work [1], the use of Datalog with appropriate
optimization not only does not slow down the analysis, but makes
D much faster than competing pointer analysis frameworks.

The use of deductive databases and logic programming lan-
guages for program analysis has a long history (e.g., [5, 21]) and
has raised excitement again recently [6, 11, 25, 26]. Like our work,
much of the past emphasis has been on using the Datalog lan-
guage. Datalog is a logic programming language originally in-
troduced in the database domain. At a first approximation, one
can view Datalog as either “SQL with full recursion” or “Pro-
log without constructors/functions”. The essence of the language
is its ability to define recursive relations. Relations (or equiva-
lently predicates) are the main Datalog data type. Computation
consists of inferring the contents of all relations from a set of in-
put relations. For instance, in our pointer analysis domain, it is
easy to represent the relevant actions of a Java program as re-
lations, typically stored as database tables. Consider two such
relations, AssignHeapAllocation(?heap, ?var) and Assign(?to,
?from). (We follow the convention of capitalizing the first letter of
relation names, while writing variable names in lower case and pre-
fixing them with a question-mark.) The former relation represents
all occurrences in the program of an instruction “a = new A();”
where a heap object is allocated and assigned to a variable. That
is, a pre-processing step takes a Java program (in our implementa-
tion this is in intermediate, bytecode, form) as input and produces
the relation contents. A static abstraction of the heap object is cap-
tured in variable ?heap—it can be concretely represented as, e.g.,
a fully qualified class name and the allocation’s bytecode instruc-
tion index. Similarly, relation Assign contains an entry for each
assignment between two Java program (reference) variables.

The mapping between the input Java program and the input re-
lations is straightforward and purely syntactic. After this step, a
simple pointer analysis can be expressed entirely in Datalog as a
transitive closure computation:
VarPointsTo(?heap, ?var) <-1

AssignHeapAllocation(?heap, ?var).2

VarPointsTo(?heap, ?to) <-3

Assign(?to, ?from), VarPointsTo(?heap, ?from).4

The Datalog program consists of a series of rules that are used
to establish facts about derived relations (such as VarPointsTo,
which is the points-to relation, i.e., it links every program vari-
able, ?var, with every heap object abstraction, ?heap, it can point
to) from a conjunction of previously established facts. We use the
left arrow symbol (<-) to separate the inferred fact (the head) from
the previously established facts (the body). For instance, lines 3-
4 above say that if, for some values of ?from, ?to, and ?heap,
Assign(?to,?from) and VarPointsTo(?heap,?from) are both true,
then it can be inferred that VarPointsTo(?heap,?to) is true. Note
the base case of the computation above (lines 1-2), as well as the
recursion in the definition of VarPointsTo (lines 3-4).

The declarativeness of Datalog makes it attractive for specifying
complex program analysis algorithms. Particularly important is the
ability to specify recursive definitions—as we discussed in the In-
troduction, program analysis is fundamentally an amalgam of mu-
tually recursive tasks. For instance, D uses mutually recursive
definitions of points-to analysis and call-graph construction. The

elegance of the declarative approach is evident when contrasted
with common implementations of points-to analyses.

Datalog evaluation is guaranteed to be bottom-up, meaning that
known facts are propagated using the rules until a maximal set
of derived facts is reached. This is also the link to the data pro-
cessing intended domain of Datalog: evaluation of a rule can be
thought of as a sequence of relational algebra joins and projections.
For instance, the evaluation of lines 3-4 in our above example can
be thought of as: Take the join of relation Assign with relation
VarPointsTo over the first column of both (because of common
field ?from) and project the join result on fields ?to and ?heap. The
result of the projection is added to relation VarPointsTo (skipping
duplicates) and forms the value of VarPointsTo for the next iter-
ation step. Application of all rules iterates to fixpoint. Note that
this means that the evaluation of a Datalog program comprises two
distinct kinds of looping/iteration activities: the relational algebra
joins and projections, and the explicit recursion of the program.
The former kind of looping is highly efficient through traditional
database optimizations (e.g., for join order, group-fetching of data
from disk, locality of reference, etc.).

We use a commercial Datalog engine, marketed by LogicBlox
Inc. This version of Datalog allows “stratified negation”, i.e.,
negated clauses, as long as the negation is not part of a recursive cy-
cle. It also allows specifying that some relations are functions, i.e.,
the variable space is partitioned into domain and range variables,
and there is only one range value for each unique combination of
values in domain variables. We will see these features in action in
our algorithm specification, next.

3. JOINT POINTS-TO AND EXCEPTION
ANALYSIS

We next describe our joint points-to and exception analysis in
D. To a large extent, the reason the algorithm can be specified
concisely and modularly is that it is in declarative form.

The relevant parts of exception handling in Java consist of declar-
ing and throwing exceptions (which are regular Java objects), as
well as catching them. An extra element, the Java finally clause,
often causes headaches for static analysis purposes [3] but is a non-
issue in our context. We perform all analysis on bytecode. At that
level, all uses of finally have already been translated away by the
Java compiler: the finally block is copied appropriately (in JDK
1.4 and later) and executed on any possible exit point, normal or
exceptional, of the try block or any local catch block.

The logic of our analysis models the Java exception handling se-
mantics. Namely, from the perspective of the D points-to anal-
ysis, exceptions introduce an interprocedural layer of assignments
over the normal source code. At throw statements, normal objects
flow into the exception-flow. At exception handlers, exception ob-
jects flow to normal Java variables. The propagation of exceptions
is similar to the propagation of objects over assignments, except
that assignment to an exception handler depends on the run-time
type of an exception, somewhat similarly to dynamic dispatch.

The exception handling logic is shown in Figures 1-6, with the
meaning of input predicates described in Figure 7 and the meaning
of computed predicates described in Figure 8. Recall that the in-
put predicates are straightforward relational representations of the
bytecode instructions of a program and are produced by a prepro-
cessing step. We next describe the important elements of the rules.

• We use some extensions and notational conventions in the code.
First, some of our relations are functions, and the functional
notation “Relation[?domainvar] = ?val” is used instead of the
relational notation, “Relation(?domainvar, ?val)”. Semanti-

ExceptionHandler:InRange(?handler, ?instruction) <-
Instruction:Method[?instruction] = ?method,
ExceptionHandler:Method(?handler, ?method),
Instruction:Index[?instruction] = ?index,
ExceptionHandler:Begin[?handler] = ?begin,
?begin <= ?index,
ExceptionHandler:End[?handler] = ?end,
?index < ?end.

Figure 1: Instructions in the range of an exception handler. A
handler is in range if it is defined in the same method and the
instruction is between the exception handler’s begin index and
end index.
PossibleExceptionHandler(?handler, ?type, ?instr) <-
ExceptionHandler:InRange(?handler, ?instr),
ExceptionHandler:Type[?handler] = ?type.

PossibleExceptionHandler(?handler, ?subtype, ?instr) <-
PossibleExceptionHandler(?handler, ?type, ?instr),
Superclass(?subtype, ?type).

Figure 2: Possible exception handlers. An exception handler is
possible if it is in range and it handles the exception type or any
of its supertypes.
ExceptionHandler:Before(?previous, ?handler) <-
ExceptionHandler:Previous[?handler] = ?previous.

ExceptionHandler:Before(?before, ?handler) <-
ExceptionHandler:Before(?middle, ?handler),
ExceptionHandler:Previous[?middle] = ?before.

InfeasibleExceptionHandler(?handler, ?type, ?instr) <-
PossibleExceptionHandler(?handler, ?type, ?instr),
ExceptionHandler:Before(?previous, ?handler),
PossibleExceptionHandler(?previous, ?type, ?instr).

Figure 3: Filter for possible exception handlers. Exception han-
dlers are ordered in the input program. An exception handler
is infeasible if another possible exception handler is before it.
Defining “infeasible” only for handlers that would be otherwise
“possible” is useful for performance reasons, although not con-
ceptually necessary.
ExceptionHandler[?type, ?instr] = ?handler <-
PossibleExceptionHandler(?handler, ?type, ?instr),
not InfeasibleExceptionHandler(?handler,?type,?instr).

Figure 4: Precise exception handler for type and instruction.
The appropriate exception handler for a type and instruction is
the single possible exception handler that is not disqualified by
the “infeasible” handlers filter.

cally the two are equivalent, only the execution engine enforces
the functional constraint and produces an error if a computation
causes a function to have multiple range values for the same do-
main value. Second, the colon (:) in relation names is just a
regular character with no semantic significance—we use com-
mon prefixes ending with a colon as a lexical convention for
grouping related predicates, such as ExceptionHandler:Before
and ExceptionHandler:InRange. Third, numeric inequality on
values is supported with standard operators (<, <=), as in Fig-
ure 1. (Adding an input-domain-ordering relation to Datalog is
a very common extension that makes the language equivalent to
the PTIME complexity class, i.e., every polynomial-time prob-
lem is expressible in Datalog and every Datalog computation is
guaranteed polynomial-time [12, p.225].)

• The analysis has two quite separate parts: Figures 1-4 and Fig-
ures 5-6. The first reason these parts are distinct is that the former

ThrowPointsTo(?heap, ?callerMethod) <-
CallGraphEdge(?invocation, ?tomethod),
ThrowPointsTo(?heap, ?tomethod),
HeapAllocation:Type[?heap] = ?heaptype,
not exists ExceptionHandler[?heaptype, ?invocation],
Instruction:Method[?invocation] = ?callerMethod.

VarPointsTo(?heap, ?param) <-
CallGraphEdge(?invocation, ?tomethod),
ThrowPointsTo(?heap, ?tomethod),
HeapAllocation:Type[?heap] = ?heaptype,
ExceptionHandler[?heaptype, ?invocation] = ?handler,
ExceptionHandler:FormalParam[?handler] = ?param.

Figure 5: Propagation of exceptions for method invocations.
ThrowPointsTo: A method ?callerMethod throws an exception
?heap if there is a call-graph edge from an invocation in
?callerMethod to some method ?tomethod and ?tomethod throws
?heap. Also, the exception should not be caught immediately by
an exception handler in ?callerMethod. VarPointsTo: If there is
such an exception handler, then the exception ?heap is assigned
to the formal parameter ?param of the exception handler.
ThrowPointsTo(?heap, ?method) <-
Throw(?instr, ?var),
VarPointsTo(?heap, ?var),
HeapAllocation:Type[?heap] = ?heaptype,
not exists ExceptionHandler[?heaptype, ?instr],
Instruction:Method[?instr] = ?method.

VarPointsTo(?heap, ?param) <-
Throw(?instr, ?var),
VarPointsTo(?heap, ?var),
HeapAllocation:Type[?heap] = ?heaptype,
ExceptionHandler[?heaptype, ?instr] = ?handler,
ExceptionHandler:FormalParam[?handler] = ?param.

Figure 6: Propagation of exceptions for throw instructions.
ThrowPointsTo: A method throws an exception if there is a
throw statement in the method, and the thrown variable ?var
points to an object ?heap that is not immediately caught by an
exception handler. VarPointsTo: If the object is caught, then it
is assigned to the formal parameter of the exception handler.

consists of fully general rules that apply to any D points-to
analysis. The latter part is the code linking the exception analy-
sis to the main relations of the host points-to analysis. The rules
shown in Figures 5-6 are for a context-insensitive points-to anal-
ysis. As we will see in the next section, for context-sensitive
analyses (e.g., 1-call-site-sensitive, 1-object-sensitive, 1-call-site-
sensitive with heap cloning) these rules have more complex coun-
terparts but with essentially the same logic flow. The extra com-
plexity is due to the representation of contexts.

• Another way to view the two distinct parts of the exception anal-
ysis logic is by noting that Figures 1-4 represent a completely
intraprocedural computation. Their purpose is to finally compute
relation ExceptionHandler of Figure 4. Note that this relation is a
function and computes, for every instruction and exception type, a
single (intraprocedural) exception handler that gets called for the
corresponding exception. In contrast, Figures 5-6 add the inter-
procedural logic: they define a relation ThrowsPointsTo which
encodes which exception objects (not types) a certain method
can throw. This is a crucial element of the joint handling of
exception analysis and points-to analysis. Since the purpose of
points-to analysis is to compute which objects a program name
can refer to, it is natural to do the same for exception objects
and this leads to straightforward interfacing with the rest of the
analysis. The ThrowPointsTo relation is defined based on the

Instruction:Method[?instruction] = ?method
Method that an instruction is in.

Instruction:Index[?instruction] = ?index
Index (program counter) of an instruction in a method body.

ExceptionHandler:Method(?handler, ?method)
Method with which an exception handler is associated.

ExceptionHandler:Previous[?handler] = ?previous
Exception handler ?previous is the exception handler immedi-
ately before exception handler ?handler. Both exception han-
dlers are associated with the same method.

ExceptionHandler:Begin[?handler] = ?begin
Exception handler ?handler is active starting at the index (pro-
gram counter) ?begin in the array of bytecode instructions of the
method body. The ?begin index is inclusive.

ExceptionHandler:End[?handler] = ?end
Exception handler ?handler stops being active at the index ?end
in the array of bytecode instructions of the method body. The
?begin index is exclusive.

ExceptionHandler:Type[?handler] = ?type
Exception handler ?handler handles exceptions of ?type. The
exception handler is called if the thrown exception is an instance
of ?type or a subclass of ?type. In Java, this corresponds to the
type T in catch(T exc){...}.

ExceptionHandler:FormalParam[?handler] = ?param
If exception handler ?handler is invoked, then the thrown excep-
tion is assigned to parameter ?param of the exception handler. In
Java, this corresponds to the variable e in catch(T e){...}.

HeapAllocation:Type[?heap] = ?heaptype
The type of an object allocated at site ?heap.

Throw(?instr, ?var)
Throw instruction with key ?instr throws the value of variable
?var.

DirectSuperclass[?subclass] = ?superclass
Class ?subclass extends class ?superclass.

Figure 7: Input Predicates

ExceptionHandler:Before(?before, ?handler)
Transitive closure of ExceptionHandler:Previous.

ExceptionHandler:InRange(?handler, ?instruction)
Exception handlers whose range includes an instruction
?instruction. In Java bytecode, exception handlers have a
begin and end index of the instructions they handle exceptions for.

PossibleExceptionHandler(?handler, ?type, ?instruction)
If an exception of type ?type is thrown directly or indirectly at
?instruction, then it might be handled by exception handler
?handler. This predicate ignores the order of exception han-
dlers, so there might be more than one exception handler for a
combination of a type and an instruction.

InfeasibleExceptionHandler(?handler,?type,?instruction)
For ?instruction, an exception of type ?type is never handled
by ?handler because there is an exception handler before
?handler that handles this type of exception.

ExceptionHandler[?type, ?instruction] = ?handler
An exception of a specific ?type, thrown at an ?instruction, is
handled by an exception handler ?handler.

ThrowPointsTo(?heap, ?method)
Method declaration ?method may throw heap abstraction ?heap.

VarPointsTo(?heap, ?var)
Variable ?var may have heap abstraction ?heap as value.

CallGraphEdge(?invocation, ?tomethod)
Method invocation ?invocation may invoke method
?tomethod.

Superclass(?subclass, ?class)
Transitive closure of DirectSuperclass (irreflexive).

Figure 8: Computed Predicates

main relations of the points-to analysis, the VarPointsTo rela-
tion and the CallGraphEdge relation. These, in turn, depend on
ThrowPointsTo, since the exception analysis adds rules that pro-
duce more VarPointsTo facts. In essence, all interprocedurality is
handled through the mutually recursive computations of the call-
graph, the points-to relation, and the exception throwing relations.

We can observe that the declarative definition of the analysis is
the main reason for its power with such conciseness. Defining the
complex mutual interdependencies manually would have been very
hard. Consider that every D points-to analysis already has mul-
tiple rules (not shown) that cause the computation of VarPointsTo
to depend on call-graph information (e.g., because method reacha-
bility is checked, because the result of a method may be assigned
to a variable, or because a variable may be a method formal argu-
ment and we need to know which method is a possible target at a
call site). Similarly, there are many rules that cause the call-graph
computation to depend on VarPointsTo (with the most notable case
being that of a variable used as a method receiver, when needing
to resolve a virtual method call). To these rules, we are adding
more complex mutual recursion, by making VarPointsTo depend
on ThrowPointsTo (and vice versa) while ThrowPointsTo also de-
pends on call-graph information (CallGraphEdge). The Datalog en-
gine automatically incrementalizes all computation so that all iter-
ations to fixpoint only need to operate on facts newly added to each
relation. To summarize, our analysis can be expressed so concisely
in Datalog because of three factors: the high-level operations on
relations, the automatic incrementalization, and the mutually re-
cursive definitions. It is interesting to consider how our analysis
would be expressed in a different language that offers high-level op-
erations on relations, such as J [18], the substrate of the P
program analysis framework. Indeed, the analysis of Figures 1-6
(just like the rest of the D logic) has a direct mapping to J.
The biggest difference is that recursion needs to be replaced by ex-
plicit iteration, where the programmer needs to specify how each
relation is used to iteratively compute others, manually emulating
the implicit Datalog fixpoint computation.

Another element to note is that the exception handling logic is, in
a sense, fully precise. This is not a formal statement and we do not
offer a proof for it, but we claim it informally based on inspection of
the natural language text of the Java Virtual Machine Specification.
We certainly have not consciously introduced any approximation in
the exception handling logic. Specifically, the intraprocedural rules
(Figures 1-4) just express the local Java exception handling seman-
tics precisely. Of course, there is an approximation introduced in
our exception analysis, but this comes directly from the abstraction
of the host points-to analysis. That is, the logic of Figures 5-6 de-
pends on the static abstraction of heap objects and method/variable
contexts chosen. If one were to imagine an “ideal” host points-to
analysis, the logic of Figures 5-6 (with a small adaptation to express
the “perfect” context) would also produce a fully precise exception
analysis. This feature offers a convenient precision knob and is not
shared by any other exception analysis in the literature.

4. CONTEXT-SENSITIVITY
D supports a range of pointer analyses, all expressed as varia-

tions over a common code trunk. The framework currently supports
a context-insensitive analysis, a 1-call-site-sensitive analysis, a 1-
object-sensitive analysis, as well as versions of the latter two with a
context-sensitive heap. Context-sensitivity is important for excep-
tion analysis: the results of past precise exception analyses [8–10]
can be emulated by our joint exception and points-to analysis only
with context-sensitivity.

4.1 DOOP Context-Sensitive Pointer Analysis
Background

Context-sensitive points-to analysis intends to add precision by
having the static abstraction for a program variable be not just the
variable’s declaration (e.g., the method, location, and name of the
variable) but also some context information. The context is typi-
cally a sequence of the N top call-sites in the calling stack or of the
static abstractions of the receiver objects for the N top calling stack
methods. In the former case the analysis is called an N-call-site-
sensitive analysis and in the latter an N-object-sensitive analysis,
for various values of N. For instance, a 1-call-site-sensitive analy-
sis can distinguish between objects that flow to variable v in method
m when m is called by instruction i of method foo and objects that
flow to v in m when m has been called by any different program
instruction.

Even more precise analyses add a context-sensitive heap (a tech-
nique also known as heap cloning): the abstraction for objects is
enhanced with a context, similar to the context of variables.

Context-sensitive points-to analysis in D is, to a large ex-
tent, similar to the previously discussed context-insensitive logic.
The main changes are due to the introduction of Datalog variables
representing contexts for variables (and, in the case of a context-
sensitive heap, also objects) in the analyzed program. For an il-
lustrative example, the following two rules handle method calls as
implicit assignments from the actual parameters of a method to the
formal parameters.

Assign(?calleeCtx, ?formal, ?callerCtx, ?actual) <-1

CallGraphEdge(?callerCtx, ?invocation,2

?calleeCtx, ?method),3

FormalParam[?index, ?method] = ?formal,4

ActualParam[?index, ?invocation] = ?actual.5

6

VarPointsTo(?heap, ?toCtx, ?to) <-7

Assign(?toCtx, ?to, ?fromCtx, ?from),8

VarPointsTo(?heap, ?fromCtx, ?from).9

The example shows how a derived Assign relation (unlike the in-
put relation Assign in the basic example of Section 2) is computed,
based on the call-graph information, and then used in deriving a
context-sensitive VarPointsTo relation. In D these rules can be
used for a 1-call-site-sensitive or a 1-object-sensitive analysis. (For
more complex contexts, we need to add extra variables, since Data-
log does not allow constructors and therefore cannot support value
combination. However, we use a simple macro system to abstract
over the number of context variables, so the rules are generated
from a common code pattern, for any number of contexts.)

The example also shows an element significant for our later ex-
perimental discussion: the context-sensitive call-graph. In order
to perform a context-sensitive analysis, the context information
needs to be propagated in the CallGraphEdge relation. This context-
sensitive call-graph is not a user-visible structure but we have found
it to be a valuable metric for understanding the precision and cost
of our exception analysis.

4.2 Context-Sensitive Exception Analysis
Adding context to our exception analysis requires propagat-

ing exceptions over the context-sensitive call-graph, and not over
the conventional, user-visible context-insensitive call-graph. Fur-
thermore, the ThrowPointsTo relation needs to become context-
sensitive, in much the same way as VarPointsTo. Figure 9 straight-
forwardly adapts Figure 5 to the context-sensitive setting.

Why is context-sensitivity important, however? The goal of our
joint analysis is employ the well-understood precision mechanisms
of a standard points-to analysis in order to match the precision of

ThrowPointsTo(?heap, ?callerCtx, ?callerMethod) <-
CallGraphEdge(?callerCtx, ?invocation,

?calleeCtx, ?method),
ThrowPointsTo(?heap, ?calleeCtx, ?tomethod),
HeapAllocation:Type[?heap] = ?heaptype,
not exists ExceptionHandler[?heaptype, ?invocation],
Instruction:Method[?invocation] = ?callerMethod.

VarPointsTo(?heap, ?callerCtx, ?param) <-
CallGraphEdge(?callerCtx, ?invocation,

?calleeCtx, ?method),
ThrowPointsTo(?heap, ?calleeCtx, ?method),
HeapAllocation:Type[?heap] = ?heaptype,
ExceptionHandler[?heaptype, ?invocation] = ?handler,
ExceptionHandler:FormalParam[?handler] = ?param.

Figure 9: Context-Sensitive Exception Analysis

(much more expensive) analyses specifically designed to track ex-
ception flow. Indeed, rich context abstractions allow our analysis
to handle even complicated scenarios of the exception-flow analysis
by Fu et al. [8, Figures 6,7] which are used to motivate improve-
ments over the original [10] DataReach algorithm.

A simpler but illustrative example is shown in Figure 10 [8,
Figure 4]. If different calls to BufferedInputStream.read are
not distinguished, exceptions resulting from the read invoca-
tion in readFile leak to readNet and vice versa. Our context-
insensitive pointer analysis with precise exception analysis returns
9 exception-links between native methods throwing I/O exceptions
and the exception handlers in readFile and readNet (Figure 11).
Even a 1-call-site-sensitive analysis is ineffective. A single call-
site is not sufficient context to distinguish the different calling con-
texts of the native methods—a very long call string would be re-
quired for that. However, a 1-object-sensitive analysis is suffi-
cient and yields the required precision. This example also shows
that a context-sensitive representation of ThrowPointsTo is crucial:
both readFile and readNet share some methods on their call-graph
paths to potential exception throwing code. Therefore, although the
call-graph is context-sensitive, a context-insensitive ThrowPointsTo
would merge the exception information of those distinct paths.

5. EXPERIMENTS
We evaluate the benefits of our joint points-to and precise excep-

tion analysis in three ways. First, we evaluate the precision and
performance compared to a points-to analysis with imprecise han-
dling of exceptions. Second, we explore approximations to deter-
mine the features contributing to the added precision. Third, we
compare the precision of our exception analysis to related work on
exception-flow analysis [10].

5.1 Precision
We compare the precision of our joint exception and points-

to analysis to a pointer analysis that uses an imprecise exception
analysis, accurately reflecting the handling of exceptions in S
and P. (Note that the D points-to analyses are logically
equivalent to the P analyses and produce identical results [1].)
The imprecise exception analysis assigns all exceptions thrown in
reachable methods to a single variable. This variable is assigned
to all reachable exception handlers. Type filtering removes excep-
tions that are not assignment-compatible with the type of a specific
exception handler.

We evaluate four analyses: context-insensitive (insens), 1-call-
site-sensitive (1 call), 1-call-site-sensitive with a context-sensitive
heap abstraction (1H call), and 1-object-sensitive (1 obj). We an-
alyze the DaCapo benchmark programs, v.2006-10-MR2, with JRE

public void readFile(String filename) {
byte[] buffer = new byte[256];
try {
InputStream f = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(f);
int c = fin.read(buffer);

} catch(IOException exc) { ... }
}
public void readNet(Socket socket) {
byte[] buffer = new byte[256];
try {
InputStream s = socket.getInputStream();
InputStream sin = new BufferedInputStream(s);
int c = sin.read(buffer);

} catch(IOException exc) { ... }
}

Figure 10: Exception-flow analysis example

readFile: catch IOException
FileInputStream: void open(java.lang.String)
FileInputStream: int readBytes(byte[],int,int)
FileInputStream: int available()
PlainSocketImpl: int socketAvailable()
SocketInputStream: int socketRead(byte[],int,int)

readNet: catch IOException
FileInputStream: int readBytes(byte[],int,int)
FileInputStream: int available()
PlainSocketImpl: int socketAvailable()
SocketInputStream: int socketRead(byte[],int,int)

Figure 11: Exception-catch links for Fig. 10 using context-
insensitive and 1-object-sensitive analyses, focusing on native
methods. The striked out results are eliminated by the 1-object-
sensitive analysis.

1.4 (j2re1.4.2_18).2 We use a 64-bit machine with two quad-core In-
tel Xeon E5345 2.33GHz CPUs. However, the LogicBlox Datalog
engine uses only one core. The machine has 16GB of RAM.

Figure 12 presents the results of this experiment. The table
shows statistics on the main products of a pointer analysis: the
context-(in)sensitive call-graph and context-(in)sensitive points-to
information. The statistics of the imprecise exception analyses are
relative to the corresponding statistics of the precise exception anal-
yses (i.e. four rows up). The imprecise exception analysis does not
compute the exceptions potentially thrown by each method, there-
fore the corresponding cells of Figure 12 are empty (-).

For context-sensitive pointer analysis, we present two sets of
statistics: one corresponds to end-user visible results and the
other to the primary internal complexity metrics. Namely, the
first group (‘after dropping contexts’) of context-insensitive statis-
tics drops all contexts after a context-sensitive analysis. For ex-
ample, for the 1 obj analysis, the relation VarPointsTo(h,ctx,v)
is projected to VarPointsTo(h,v) showing which objects a pro-
gram variable can point to. The second group of results (‘be-
fore dropping contexts’) is context-sensitive, although it does
drop the context of the heap abstraction for the 1H call analy-
sis, so that it is comparable with the rest. For example, for
1H call the relation VarPointsTo(hCtx,h,vCtx,v) is projected to
VarPointsTo(h,vCtx,v). These context-sensitive results are rele-
vant for client analyses that consider contexts. Also, the context-
sensitive statistics are an indication of the size of the relations that
the analysis operates on. For the context-sensitive results and a
context-insensitive analysis, we repeat the context-insensitive re-
sults to ease comparison.

2We do not benchmark fop, because for whole program static anal-
ysis the benchmark has missing dependencies.

le
ge

nd

precise = pointer analysis with precise exception analysis var points-to = total and mean (per variable) entries in var points-to relation
imprecise = pointer analysis with imprecise exception analysis throw points-to = total and mean (per method) entries in throw points-to relation
nodes, edges = call-graph nodes, call-graph edges

after dropping contexts (context-insensitive) before dropping contexts (context-sensitive)
prog analysis nodes edges var points-to throw points-to nodes edges var points-to throw points-to time (sec)

an
tlr

pr
ec

is
e insens 5K 38K 10M 181 1.3M 252 5K 38K 10M 181 1.3M 252 74

1 call 5K 38K 767K 13 757K 150 38K 159K 4.3M 17 4.5M 119 91
1H call 5K 38K 759K 13 756K 150 38K 154K 4.1M 16 4.5M 119 464
1 obj 5K 38K 598K 10 579K 115 60K 1.0M 3.4M 9 1.9M 31 191

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.0 +9 - - ×1.0 ×1.0 ×1.0 +9 - - 53
1 call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +7 - - 59
1H call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +7 - - 467
1 obj ×1.0 ×1.0 ×2.0 +11 - - ×1.1 ×6.1 ×4.6 +28 - - 2680

bl
oa

t pr
ec

is
e insens 6K 47K 8.4M 137 1.9M 302 6K 47K 8.4M 137 1.9M 302 74

1 call 6K 47K 3.7M 60 1.2M 189 47K 274K 28M 86 8.7M 186 272
1H call 6K 46K 3.7M 60 1.2M 189 46K 259K 27M 84 8.6M 185 4909
1 obj 6K 46K 2.7M 45 1.0M 161 81K 2.9M 16M 32 7.3M 91 868

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.0 +5 - - ×1.0 ×1.0 ×1.0 +5 - - 48
1 call ×1.0 ×1.0 ×1.1 +6 - - ×1.0 ×1.0 ×1.1 +4 - - 181
1H call ×1.0 ×1.0 ×1.1 +6 - - ×1.0 ×1.0 ×1.1 +4 - - 3529
1 obj ×1.0 ×1.0 ×1.2 +7 - - ×1.0 ×1.9 ×1.4 +12 - - 1563

ch
ar

t pr
ec

is
e insens 8K 40K 5.7M 82 1.8M 230 8K 40K 5.7M 82 1.8M 230 65

1 call 8K 39K 2.5M 36 956K 123 40K 170K 17M 64 3.7M 94 138
1H call 8K 39K 2.5M 35 955K 123 40K 169K 17M 64 3.7M 94 650
1 obj 8K 39K 2.3M 33 792K 103 95K 1.9M 18M 27 4.5M 47 447

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +13 - - ×1.0 ×1.0 ×1.2 +13 - - 44
1 call ×1.0 ×1.0 ×1.4 +14 - - ×1.0 ×1.0 ×1.2 +11 - - 113
1H call ×1.0 ×1.0 ×1.4 +14 - - ×1.0 ×1.0 ×1.2 +11 - - 671
1 obj ×1.0 ×1.0 ×1.4 +15 - - ×1.1 ×5.4 ×2.3 +31 - - 5429

ec
lip

se pr
ec

is
e insens 5K 26K 3.1M 69 1.4M 286 5K 26K 3.1M 69 1.4M 286 41

1 call 5K 25K 841K 19 728K 151 25K 125K 4.5M 26 2.9M 114 69
1H call 5K 25K 838K 19 727K 151 25K 125K 4.5M 26 2.9M 114 316
1 obj 5K 25K 672K 15 592K 123 55K 2.3M 5.3M 14 3.1M 56 480

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +11 - - ×1.0 ×1.0 ×1.2 +11 - - 27
1 call ×1.0 ×1.0 ×1.7 +14 - - ×1.0 ×1.0 ×1.3 +9 - - 50
1H call ×1.0 ×1.0 ×1.7 +13 - - ×1.0 ×1.0 ×1.3 +9 - - 287
1 obj ×1.0 ×1.0 ×2.0 +15 - - ×1.1 ×4.1 ×3.8 +33 - - 3794

hs
ql

db pr
ec

is
e insens 4K 18K 1.9M 55 855K 229 4K 18K 1.9M 55 855K 229 39

1 call 4K 18K 483K 14 441K 118 18K 71K 2.5M 21 1.6M 90 56
1H call 4K 18K 477K 14 440K 118 18K 66K 2.4M 20 1.6M 89 159
1 obj 4K 18K 401K 12 356K 96 38K 891K 2.6M 10 1.5M 39 170

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +8 - - ×1.0 ×1.0 ×1.2 +8 - - 19
1 call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +8 - - 36
1H call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +8 - - 144
1 obj ×1.0 ×1.0 ×2.0 +11 - - ×1.1 ×3.2 ×3.0 +18 - - 828

jy
th

on pr
ec

is
e insens 6K 33K 5.1M 93 1.9M 322 6K 33K 5.1M 93 1.9M 322 66

1 call 6K 33K 2.3M 41 1.2M 198 33K 150K 14M 58 5.1M 154 141
1H call 6K 33K 2.3M 41 1.2M 198 33K 150K 14M 58 5.1M 154 1358
1 obj 6K 33K 2.0M 36 1.1M 189 95K 2.6M 17M 25 14M 146 914

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +18 - - ×1.0 ×1.0 ×1.2 +18 - - 41
1 call ×1.0 ×1.0 ×1.5 +22 - - ×1.0 ×1.0 ×1.4 +24 - - 117
1H call ×1.0 ×1.0 ×1.5 +22 - - ×1.0 ×1.0 ×1.4 +24 - - 1436
1 obj ×1.0 ×1.0 ×1.6 +22 - - ×1.1 ×3.2 ×2.2 +25 - - 3037

lu
in

de
x pr

ec
is

e insens 4K 19K 1.9M 54 939K 232 4K 19K 1.9M 54 939K 232 31
1 call 4K 19K 512K 14 494K 122 19K 74K 2.7M 21 1.7M 90 48
1H call 4K 19K 506K 14 493K 122 19K 69K 2.5M 20 1.7M 89 159
1 obj 4K 19K 434K 12 382K 95 39K 905K 2.8M 10 1.6M 41 149

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +9 - - ×1.0 ×1.0 ×1.2 +9 - - 20
1 call ×1.0 ×1.0 ×1.8 +12 - - ×1.0 ×1.0 ×1.4 +8 - - 36
1H call ×1.0 ×1.0 ×1.8 +12 - - ×1.0 ×1.0 ×1.4 +8 - - 146
1 obj ×1.0 ×1.0 ×2.0 +13 - - ×1.1 ×3.6 ×3.2 +19 - - 987

lu
se

ar
ch pr

ec
is

e insens 5K 22K 2.2M 54 1.1M 231 5K 22K 2.2M 54 1.1M 231 34
1 call 5K 22K 609K 15 547K 118 22K 85K 3.2M 22 2.0M 88 53
1H call 5K 22K 603K 15 545K 118 22K 80K 3.0M 21 1.9M 87 186
1 obj 5K 22K 500K 13 397K 86 43K 927K 3.0M 11 1.6M 37 153

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +9 - - ×1.0 ×1.0 ×1.2 +9 - - 22
1 call ×1.0 ×1.0 ×1.7 +11 - - ×1.0 ×1.0 ×1.3 +7 - - 39
1H call ×1.0 ×1.0 ×1.7 +11 - - ×1.0 ×1.0 ×1.3 +7 - - 171
1 obj ×1.0 ×1.0 ×1.9 +12 - - ×1.1 ×3.8 ×3.2 +21 - - 1091

pm
d pr

ec
is

e insens 5K 26K 3.3M 72 1.5M 271 5K 26K 3.3M 72 1.5M 271 52
1 call 5K 26K 1.0M 22 692K 127 26K 106K 5.5M 30 2.4M 91 79
1H call 5K 26K 1.0M 21 691K 127 26K 100K 5.2M 29 2.3M 90 263
1 obj 5K 26K 926K 20 581K 107 51K 1.1M 5.0M 15 2.2M 43 231

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +14 - - ×1.0 ×1.0 ×1.2 +14 - - 29
1 call ×1.0 ×1.0 ×1.8 +18 - - ×1.0 ×1.0 ×1.4 +10 - - 59
1H call ×1.0 ×1.0 ×1.8 +18 - - ×1.0 ×1.0 ×1.4 +11 - - 251
1 obj ×1.0 ×1.0 ×1.9 +18 - - ×1.1 ×3.8 ×2.7 +23 - - 1390

xa
la

n pr
ec

is
e insens 4K 18K 1.7M 51 855K 229 4K 18K 1.7M 51 855K 229 35

1 call 4K 18K 464K 14 459K 123 18K 70K 2.4M 20 1.7M 93 51
1H call 4K 17K 459K 14 458K 123 18K 65K 2.3M 20 1.6M 92 154
1 obj 4K 18K 394K 12 358K 97 37K 885K 2.6M 11 1.5M 39 174

im
pr

ec
is

e insens ×1.0 ×1.0 ×1.2 +8 - - ×1.0 ×1.0 ×1.2 +8 - - 18
1 call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.3 +7 - - 33
1H call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +7 - - 141
1 obj ×1.0 ×1.0 ×1.9 +11 - - ×1.1 ×3.2 ×3.0 +18 - - 834

Figure 12: Precise versus imprecise exception analysis. Results for imprecise analysis are relative to corresponding precise analysis.

Var Points-To Precision. The primary benefit of our analysis is
evident in the precision of the points-to results. This effect is
more pronounced for more precise (context-sensitive) analyses. For
these analyses, the context-insensitive var points-to relation (the pri-
mary user-visible end result of a points-to analysis) is substantially
smaller compared to imprecise exception handling. In particular,
for a 1 obj analysis (which is the most precise of the analyses we
tried in terms of points-to sets sizes) the increase in precision due
to improved exception handling is 1.9× or better (i.e., a program
variable is on average predicted to point to roughly half as many
objects) for 7 of our 10 benchmarks!

The context-sensitive var points-to relation is comparatively even
smaller when using our precise exception analysis. For the 1 obj
analysis, 6 out of our 10 benchmarks exhibit 3× or better increase
in precision. That is, more than two-out-of-three inferred facts re-
lating a variable, under a context, to a heap object were due entirely
to the imprecision of exception handling! This provides evidence
that the context abstraction is used much more effectively to in-
crease precision under our joint analysis.

Call-Graph Precision.3 Precise exception analysis does not sub-
stantially reduce the number of nodes and edges of the context-
insensitive call-graph. This is not surprising, since earlier studies
demonstrated that improvements in precision barely influence the
context-insensitive call-graph [19].

The context-sensitive call-graph is also not significantly affected,
except in the case of the 1 obj analysis. This is quite expected, since
this analysis uses objects as contexts. Therefore, the size of the
context-sensitive call-graph is highly related to the size of points-
to sets: if a variable points to more abstract objects, then methods
invoked on this variable will be invoked in more contexts under a 1
obj analysis. The effect of imprecise exception handling is minor in
terms of nodes (about a 10% increase) but major in terms of edges
(a 1.9× to 6.1× increase).

Throw Points-To Precision. Recall that the throw points-to re-
lation expresses what exception objects can be thrown by each
method (under a context, in the context-sensitive throw points-to
case). Therefore it is a major metric of the precision of our excep-
tion analysis, and the question is how it is affected when varying
the precision of the points-to analysis.

When moving from an insensitive analysis to a context-sensitive
analysis, the context-insensitive throw points-to relation is generally
two times smaller. This confirms that using a context-sensitive
pointer analysis is useful for determining which exceptions may
be thrown by a method. However, the increased precision for
throw points-to is less pronounced than the increased precision for
the context-insensitive var points-to relation. This is easy to under-
stand: for a context-insensitive pointer analysis all invocations of
a method return the same points-to set, i.e., parameters of an in-
vocation “leak” to other invocations. Thrown exceptions are less
directly dependent on parameters.

Similar to var points-to, the 1 obj analysis is the most precise
analysis for throw points-to. For this analysis, the mean number of
exceptions thrown per context-sensitive method is always signifi-
cantly lower than the mean per context-insensitive method. Also,
the mean of the 1 obj analysis is always substantially lower than for
the 1 call analyses. This illustrates that object-sensitivity is a useful
context abstraction for calculating throw points-to.

The 1H call analysis with precise exception analysis minimally
improves the precision of throw points-to compared to 1 call. This

3Except for the antlr benchmark, we have not yet configured dy-
namically loaded classes. This means that some parts of the bench-
marks are not reachable.

var points-to throw points-to
cs o f e sens insens sens insens
× × × 1.0M 3.4M 9 598K 10 1.9M 31 579K 115
× × ×1.5 ×1.2 +2 ×1.0 +0 ×1.1 +3 ×1.1 +11
× × ×2.6 ×1.8 +6 ×1.2 +2 ×1.9 +23 ×1.9 +103
× ×2.6 ×1.9 +7 ×1.3 +3 ×1.9 +23 ×1.9 +103
× × ×1.1 ×1.2 +2 ×1.1 +1 - - ×1.9 +108
× ×1.6 ×1.5 +4 ×1.2 +2 - - ×2.1 +126

× ×2.7 ×2.5 +11 ×1.4 +4 - - ×3.4 +276
×2.7 ×2.5 +12 ×1.5 +5 - - ×3.4 +276

imprecise ×6.1 ×4.6 +28 ×2.0 +11 - - - -

cs = context-sensitive throw points-to
o = order of exception handlers is considered
f = caught exceptions are filtered (not thrown)
e = context-sensitive call-graph edges
sens = context-sensitive, total and mean
insens = context-insensitive, total and mean

Figure 13: Precision of approximations for exception analysis
with 1-object-sensitive pointer analysis and DaCapo’s antlr.

corresponds to conclusions in related work that the 1H call analysis
is not effective for object-oriented programs.

Analysis Time. Besides the precision improvements, the most
striking result is the performance improvement of using precise ex-
ception analysis with the 1 obj pointer analysis: 14× for antlr, 12×
for chart, between 5× and 10× for most of the benchmark programs,
and, as a minimum, 1.8× for bloat.

The analysis time comparison is a trade-off in most cases. Com-
pared to an imprecise exception analysis, a precise exception anal-
ysis computes more information: the throw points-to relation. This
relation is big, usually not much smaller than the var points-to re-
lation. The performance of the benchmarks is correlated with the
sum of the var points-to, throw points-to, and call-graph edge relations.
If introducing the throw points-to calculation substantially reduces
the others, then the performance improves substantially. For 1 obj
the benefit of precise information about thrown exceptions clearly
compensates for the cost of computing it. The overhead of an im-
precise exception analysis is basically unacceptable in this case.

For the insens, 1 call, and 1H call analyses, precise exception
analysis is usually a bit slower than imprecise exception handling.
Therefore, the “only” benefit for these analyses is increased pre-
cision. However, in recent years several researchers have pointed
out that object sensitivity is the most useful context abstraction for
object-oriented programs, which makes our precision and perfor-
mance improvements for the 1 obj analysis highly relevant.

5.2 Approximations for Exception Analysis
Having shown the major precision improvement of fully pre-

cise analysis of exceptions, the question is what this improve-
ment should be attributed to. To explore this, we focus on
the 1-object-sensitive analysis and antlr. We evaluate the preci-
sion and performance by gradually removing features from our
“fully precise” analysis, introducing the following approximations:
(1) context-insensitive method throws abstraction: we consider a
ThrowPointsTo relation with no context; (2) unordered handlers:
we ignore the order of exception handlers; (3) no filtering of caught
exceptions: a method throws all exceptions thrown in its dynamic
scope, even if an exception is caught. This implies that the index
of an instruction does not need to be compared to the range of an
exception handler.

Figure 13 presents the results. The configuration of features (in-
dicated by ×) of the first row is equal to our precise exception anal-
ysis. The statistics of all other configurations are relative to the
results for this analysis. As can be seen, every approximation in-
troduces a major increase of call graph edges, var points-to or throw
points-to.

The most interesting approximations are: ignoring the order
of exception handlers (second row) and making throw points-to
context-insensitive (first row in second part). The latter is tempting
for reducing memory consumption, however the sum of context-
sensitive throw points-to and var points-to is not lower for this ap-
proximation.

5.3 Exception-Flow Analysis
While the precise exception analysis has a major impact on the

size of the call-graph, var points-to and throw points-to, the impact
of the increased precision is especially clear with a client analysis
that focuses on exceptions. We next evaluate such a client analysis,
namely calculating exception-catch links (e-c links).

An e-c link is a tuple of an instruction that may throw an excep-
tion and a handler that might handle this exception. Fu et al. use
e-c links to determine the test suite coverage of exception handling
code [8–10]. Their method first uses a sophisticated custom static
analysis to determine a set of possible e-c links. Next, it determines
the number of covered e-c links by injecting faults at throw-sites
and monitoring which e-c links are covered by a test suite. The
percentage of possible e-c links that have been covered is then used
as a coverage metric. The precision of the possible e-c link analysis
is crucial for this coverage metric to be meaningful and practical.
The Fu et al. exception analysis works as a filter on e-c links pro-
duced by a context-insensitive pointer analysis that uses the impre-
cise exception handling we evaluated in Section 5.1. We compare
this approach to our joint points-to and exception analysis.

Setup. We contacted Chen Fu to learn more about the exact setup
of the experiment reported in past literature [10]. This proved to be
difficult to reproduce exactly for several reasons: (1) the analysis
implementation has evolved to become a specialized analysis [9]
and cannot be used in its current form to perform the original, gen-
eral exception-flow analysis; (2) the number of I/O related e-c links
highly depends on the specification of dynamically loaded classes,
but the list used by Fu et al. was not available; (3) the resulting
e-c links could not be compared because the results of the original
experiments (beyond numerical aggregates) are not available. As a
result, our e-c links are not necessarily a sub- or superset of the e-c
links reported by Fu et al.—we have spent considerable effort to do
a faithful comparison, but emphasize that these issues need to be
considered when comparing the results. In conceptual terms (e.g.,
based on published examples of cases handled) we see no reason
why the Fu and Ryder analysis would be more precise than ours,
based on the algorithm description.

For this experiment we use JRE 1.3 (jre1.3.1_20) to make a com-
parison possible. We selected the smallest and the largest bench-
mark used by Fu et al.: ftpd-0.6 and muffin-0.9.3a. Our e-c link client
analysis is a query on the results of the joint points-to and exception
analysis. If a native method throws an exception e and the param-
eter of an exception handler points to e, then we conclude that this
is an e-c link. This is slightly more general than the analysis of
Fu et al. [8, 10], since our approach also handles rethrown excep-
tions. This can result in more e-c links than discovered by Fu et al.
Note that the test coverage application of e-c links does not require
soundness (i.e., missing e-c links is acceptable). Our results are
sound, under the assumption that we model native code correctly
and dynamic class loading is configured correctly.

Benchmarks. FTPD handles FTP requests using reflection based
on strings in the input. Though D performs reflection analysis,
no static analysis can handle this without configuration input. We
modified the code to call methods directly, and confirmed that Fu
et al. did this as well. For FTPD, our analyses report 101 reach-

all I/O I/O sel. time (sec)

ftp
d pr

ec

insens 243 109 47 15
1 call 176 68 17 18
1 obj 164 66 I15 15

im
pr

ec insens 459 325 104 12
1 call 446 312 91 18
1 obj 446 312 91 23

m
uf

fin pr
ec

insens 1109 466 237 31
1 call 743 294 134 44
1 obj 611 134 I49 94

im
pr

ec insens 1811 1555 490 22
1 call 1811 1555 490 40
1 obj 1741 1485 420 86

Figure 14: Number of exception-catch links between native
methods throwing exceptions and handlers in application code
(all: all native methods; I/O: all native methods throwing
IOException or subclasses; I/O sel.: the selection of the native
I/O methods used by Fu et al.)

able methods. This number differs from the 128 reported meth-
ods in [10]. We have verified by hand that the extra 27 meth-
ods are not reachable. Muffin involves substantial amounts of na-
tive code because its user-interface is based on AWT. We have
configured the analysis to make all AWT event handling meth-
ods reachable. Also, there are a few places where reflection is
used. In most cases, classes are loaded based on a simple name
and string concatenation (e.g., "CookieMonster" loads the class
org.doit.muffin.filter.CookieMonsterFilter).

Results. Figure 14 presents the results of our experiment. To give
more insight into the number of e-c links, we do not only report
on the 32 native methods selected by Fu et al., but also include
statistics for all native methods and all I/O related native methods.

Clearly, an imprecise exception analysis is largely useless for
reducing the number of e-c links, regardless of the pointer analysis
used. The precise exception analysis reduces the number of e-c
links by a factor of 6 to 10 when using a context-sensitive analysis.

The most precise analysis of Fu et al. reports 13 possible e-c
links for FTPD, and 42 for Muffin. Our 1 obj analysis reports a few
more e-c links (15 and 49), but, as explained earlier, it is unclear if
this is actually due to imprecision. Our analysis could actually be
more precise, but trace more exception-flow. A strong indication
that this is the case is provided by the reported number of e-c links
for our insens analysis. Fu et al. report on the number of e-c links
found using the S context-insensitive pointer analysis without
a further exception analysis: 16 for FTPD and 112 for Muffin. Our
context-insensitive analysis is comparable in precision to S,
yet discovers 47 and 237 links. Therefore we suspect that our sound
analysis explores a much larger space of exception flow and still
reduces the e-c links to numbers comparable to those of Fu et al.

The analysis of Fu et al. is reported [8] to take 298 seconds for
FTPD and 4,043 seconds for Muffin on a 2.8GHz P4 machine. The
vast majority of the time is spent in the custom exception analysis,
and not in the S points-to analysis. Our analysis readily out-
performs the reported Fu et al. numbers, and the speedup is much
higher than even a generous allowance for the difference in ma-
chine speeds.4 Our 1 obj analysis is 20× faster for FTPD and 43×
faster for Muffin.

We conclude that our general joint points-to and exception anal-
ysis achieves precision comparable to the custom exception-flow

4Standard benchmarks (e.g., http://www.cpubenchmark.net) put
the Fu et al. CPU at 15% of the speed of our 2.33GHz quad-core
Xeon for peak performance with all four cores of the Xeon utilized.
In single-threaded performance and realistic applications, the two
CPUs are probably much closer.

analysis. Moreover, the dramatic performance improvement leaves
a lot of room to experiment with improving the precision by intro-
ducing more context.

6. DISCUSSION
We next discuss various factors regarding the precision or appli-

cability of our results.

Analysis Architecture. In D, imprecision directly affects the
speed of the analysis. Thus, a large points-to relation proportion-
ally slows down our analysis. This is not the case in points-to anal-
yses that employ BDDs, such as P [16]. The number of dis-
tinct points-to sets may be a better indicator of the analysis cost for
such analyses. Thus, the conservative exception handling of P-
 affects the precision of the analysis results, but not the running
time—P with conservative but imprecise exception analysis
is barely slower than its mode that unsoundly ignores exceptions.
(Nevertheless, in our other study [1] we show D to outperform
P by 4× to 12× on the analyses of Section 5.1, so P’s im-
precise analysis certainly does not offer a performance sweet spot
compared to D.)

Implicitly Thrown Exceptions. Our numbers do not include a
handling of implicitly thrown exceptions. These include violations
of language preconditions (e.g., NullPointerException) but also
JVM errors, which can be thrown anywhere and are rarely caught.
Whether implicit exceptions are relevant depends on the client anal-
ysis. If a sound pointer analysis is crucial, for example for program
optimization, then implicitly thrown exceptions should be reported.
It is likely, however, that such exceptions will require special treat-
ment. This is just a matter of engineering and not a conceptual
analysis problem because the precision of the analysis of implicitly
thrown exceptions is less important: it is hardly useful to have a
heap abstraction that identifies the allocation-site, or even the con-
text of allocation for OutOfMemoryErrors, NullPointerExceptions,
etc. Therefore, the impact on the amount of points-to data will be
limited. For instance, the type of the implicit exception can be used
as the heap abstraction. This limits the number of possible objects
drastically, but ensures that the points-to information is complete.

Thread.stop. The deprecated stop method of a Java thread stops
a thread by throwing an object in the thread that is stopped. By
default, this is a ThreadDeath error, but any Throwable object can
be passed to the stop method.

There are multiple problems with the Thread.stop method
(hence the deprecation). Via Thread.stop, any instruction in the
program can throw any Throwable object. The specified, checked
exceptions of method declarations are not even relevant. (These
cannot be trusted in bytecode anyway, as the bytecode may have
been produced by an untrusted compiler, and the JVM verifier does
not confirm the correctness of exception declarations in a method’s
signature.) Possible solutions range from the conservative (“de-
tect use of Thread.stop and refuse to analyze the program”) to the
sophisticated (“perform a thread-sensitive analysis [20] of which
methods can execute in which thread and what objects can be
passed to the stop method”). Neither D nor other points-to
frameworks (e.g., S and P) handle Thread.stop but such
support can be added.

7. RELATED WORK
Precise exception analysis has not been integrated in a pointer

analysis before to the best of our knowledge. This is surprising,
since there is a clear mutual dependency and improving the preci-
sion of one analysis directly affects the other. We claim that excep-

tion analysis should not be considered a client of pointer analysis.

Exception Analysis. The main differences with previous excep-
tion analysis work are the increased precision and generality of our
joint analysis. All of the earlier work on exception analysis prop-
agates exceptions over a context-insensitive call graph. Often, this
call graph is also constructed using an imprecise method, such as
class hierarchy analysis. Propagating exceptions over a context-
insensitive call graph does not, for example, distinguish the differ-
ent contexts of file I/O and socket I/O in Figure 10. We have shown
that propagating exceptions over a context-sensitive call graph sub-
stantially increases the precision of an exception analysis.

Most earlier work on exception analysis represents a potentially
thrown exception by its type and does not consider points-to infor-
mation. In this way, it is possible to see what exceptions a method
throws, but not where they come from. Type-based exception anal-
yses also have to be very conservative when thrown exceptions are
not directly allocated by a throw statement, but, for example, are
obtained via invoking a method, or retrieved from the cause field
(a member of every Throwable) of a wrapper exception. Thanks
to our joint analysis, we support arbitrary code leading to thrown
exceptions.

Robillard et al. [22] present the tool J for interprocedural
exception-flow analysis. J propagates exceptions, represented by
types, over a call graph constructed using class hierarchy analysis.
The results are imprecise and incomplete because (1) J does not
handle throw statements that do not directly allocate an exception
and (2) class hierarchy analysis produces an imprecise call graph.

Buse et al. [2] present a sophisticated tool for documenting un-
der which conditions an exception can be thrown. This tool is an
extension of J. It also uses a more precise call graph, computed
by S. After computing the exceptions that can be thrown by a
method, the program paths leading to throw-sites are symbolically
executed to construct a predicate that describes the condition that
leads to an exception. This aspect of the tool is orthogonal to our
pointer analysis. The effectiveness of the tool could be improved
substantially by using results of our exception analysis as input.

Jo et al. [13] present an interprocedural exception analysis that
is similar to J, reporting the types of potentially thrown excep-
tions. The context-insensitive analysis depends on a class analysis,
which gives the possible types of an expression. While the pre-
cision of the tool depends on the precision of the class analysis,
the analysis is overall imprecise for reasons similar to J. Ryu et
al. [23] extend this analysis with a concurrency analysis to support
throwing exceptions between threads, specifically addressing the
problem of Thread.stop. A points-to based solution would again
result in more precise information, also for exceptions flowing to
Thread.stop.

Leroy et al. [15] present an analysis of uncaught exceptions for-
malized as a type system for exceptions, accompanied by a type in-
ference algorithm. Their system supports a limited form of context-
sensitivity to obtain more precise results for polymorphic functions.
Leroy et al. report that they abandoned a more precise control-flow
analysis approach out of performance and scalability concerns. For
integration in a compiler, this is probably still a valid concern.

Yi et al. [27] present a static analysis for finding uncaught ex-
ceptions in SML. Similarly to the work of Leroy et al., this analy-
sis was intended for inclusion in a compiler and, therefore, sacri-
fices precision for performance. The mutual dependency between
control-flow and exception-flow is addressed by approximation.

We explicitly compared to the exception-flow work of Fu et
al. [8, 10] in Section 5.3 and used their e-c link metric. In later
work, Fu et al. studied the problem of discovering chains of thrown
exceptions [9]. Our analysis automatically supports exceptions that

get rethrown as-is. The points-to analysis also takes care of excep-
tions that are wrapped in a different exception and then rethrown.
The analysis for other flow of data from a caught exception to a
new thrown exception is orthogonal to exception-flow and pointer
analysis. It is a real client analysis, without mutually recursive re-
lationships to any points-to data.

Pointer Analysis. Exceptions have not received much attention in
points-to analysis research. We show in this paper that imprecise
exception analysis has a major impact, not only on performance,
but also on statistics that are reported to indicate the precision ben-
efits of context abstractions. For example, from our evaluation it
is clear that imprecise exception analysis hurts an object-sensitive
analysis more than it hurts a call-site-sensitive analysis.

S [17] and P [16, 19] both use the imprecise excep-
tion analysis we discussed in Section 5.1. Soot also has a separate
exception analysis [14] that is not based on a pointer analysis.

IBM Research’s W [7] static analysis library is designed to
support different pointer analysis configurations. The points-to
analyses of W support computing which exceptions a method
can throw, but no results of W’s accuracy or speed have been
reported in the literature. It will be interesting to compare our anal-
yses to W in future work.

bddbddb is a Datalog and BDD-based database that has been em-
ployed for points-to analysis [25, 26]. The publications do not dis-
cuss exception analysis, yet the bddbddb distribution examples do
propagate exceptions over the control-flow graph. One of the differ-
ences between D and bddbddb is that D expresses the entire
analysis in Datalog and only relies on basic input facts. In contrast,
the points-to analyses of bddbddb largely rely on pre-computed in-
put facts, such as a call graph, reducing the Datalog analysis to just
a few lines of code for propagating points-to data. For exception
analysis, the analyses of bddbddb rely on input facts that define for
every method invocation to which variable the thrown exceptions
should be assigned. This ignores the order of exception handlers
and also disables filtering of caught exceptions.

Sinha et al. discuss how to represent exception flow in the
control-flow graph [24]. One of the topics is handling finally
clauses, but we analyze Java bytecode and the complex control-
flow of finally clauses is already handled by the Java compiler.
Also, our analysis is flow-insensitive.

Choi et al. suggested a compact intraprocedural control-flow
representation that collapses the large number of edges to excep-
tions handlers [4]. Our analyses are interprocedural and flow-
insensitive, so not directly comparable to this work. However, we
could perhaps use ideas from this representation to reduce the size
of the predicate to look up an exception handler given an instruction
and an exception type.

Acknowledgments. This work was funded by the NSF (CCR-
0735267, CCF-0934631) and LogicBlox Inc. We thank Chen Fu
and Ondřej Lhoták for their help with our experiments.

8. REFERENCES
[1] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification

of sophisticated points-to analyses. In submission to OOPSLA ’09:
24th annual ACM SIGPLAN conference on Object Oriented
Programming, Systems, Languages, and Applications, 2009.

[2] R. P. Buse and W. R. Weimer. Automatic documentation inference
for exceptions. In ISSTA ’08: Proceedings of the 2008 International
Symposium on Software Testing and Analysis, 2008.

[3] R. Chatterjee, B. G. Ryder, and W. A. Landi. Complexity of points-to
analysis of Java in the presence of exceptions. IEEE Trans. Softw.
Eng., 27(6):481–512, 2001.

[4] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise

modeling of exceptions for the analysis of Java programs. SIGSOFT
Softw. Eng. Notes, 24(5):21–31, 1999.

[5] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical
program analysis using general purpose logic programming systems -
a case study. In PLDI ’96: Proceedings of the ACM SIGPLAN 1996
conference on Programming Language Design and Implementation,
1996.

[6] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini. Defining
and continuous checking of structural program dependencies. In
ICSE ’08: Proceedings of the 30th International Conference on
Software Engineering, 2008.

[7] S. J. Fink. T.J. Watson libraries for analysis (WALA).
http://wala.sourceforge.net.

[8] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott. Robustness
testing of Java server applications. IEEE Trans. Softw. Eng.,
31(4):292–311, 2005.

[9] C. Fu and B. G. Ryder. Exception-chain analysis: Revealing
exception handling architecture in Java server applications. In ICSE
’07: Proceedings of the 29th International Conference on Software
Engineering, 2007.

[10] C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott. Testing of java
web services for robustness. In ISSTA ’04: Proceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2004.

[11] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable
source code queries with Datalog. In ECOOP’06: Proceedings of the
20th European Conference on Object-Oriented Programming, 2006.

[12] N. Immerman. Descriptive Complexity. Springer, 1998.
[13] J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Choe. An uncaught

exception analysis for Java. J. Syst. Softw., 72(1):59–69, 2004.
[14] J. Jorgensen. Improving the precision and correctness of exception

analysis in Soot. Technical Report 2003-3, McGill University, 2004.
[15] X. Leroy and F. Pessaux. Type-based analysis of uncaught

exceptions. ACM Trans. Program. Lang. Syst., 22(2):340–377, 2000.
[16] O. Lhoták. Program Analysis using Binary Decision Diagrams. PhD

thesis, McGill University, 2006.
[17] O. Lhoták and L. Hendren. Scaling Java points-to analysis using

Spark. In Compiler Construction, 12th International Conference,
2003.

[18] O. Lhoták and L. Hendren. Jedd: a BDD-based relational extension
of Java. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004
conference on Programming Language Design and Implementation,
2004.

[19] O. Lhoták and L. Hendren. Evaluating the benefits of
context-sensitive points-to analysis using a BDD-based
implementation. ACM Trans. Softw. Eng. Methodol., 18(1):1–53,
2008.

[20] J. Qian and B. Xu. Thread-sensitive pointer analysis for inter-thread
dataflow detection. In FTDCS ’07: Proc. of the 11th IEEE Int.
Workshop on Future Trends of Distributed Computing Systems, 2007.

[21] T. Reps. Demand interprocedural program analysis using logic
databases. In Applications of Logic Databases, 1994.

[22] M. P. Robillard and G. C. Murphy. Static analysis to support the
evolution of exception structure in object-oriented systems. ACM
Trans. Softw. Eng. Methodol., 12(2):191–221, 2003.

[23] S. Ryu and K. Yi. Exception analysis for multithreaded Java
programs. In APAQS ’01: Proceedings of the Second Asia-Pacific
Conference on Quality Software, 2001.

[24] S. Sinha and M. J. Harrold. Analysis and testing of programs with
exception handling constructs. IEEE Trans. Softw. Eng.,
26(9):849–871, 2000.

[25] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with
binary decision diagrams for program analysis. In Proc. of the 3rd
Asian Symposium on Programming Languages and Systems, 2005.

[26] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In PLDI ’04:
Proceedings of the ACM SIGPLAN 2004 conference on
Programming Language Design and Implementation, 2004.

[27] K. Yi and S. Ryu. Towards a cost-effective estimation of uncaught
exceptions in SML programs. In SAS ’97: Proceedings of the 4th
International Symposium on Static Analysis, 1997.

