
SIGPLANACM

Functional Programming

Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@research.bell-labs.com

Functional Programming in C++ using the FC++ Library

Brian McNamara and Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
http://www.cc.gatech.edu/ �yannis/fc++/

“. . . the determined Real Programmer can write
FORTRAN programs in any language.”

Real Programmers Don't Use PASCAL,
Ed Post (1982)

Some twenty years and a few major languages later,
the ability to write “FORTRAN code” in any language
is still easy to assert. One would hope, however, that
the property of transcending languages is not limited to
the unrefined “Real Programmer” and to “FORTRAN
code”. Can the determined Functional Programmer write
Haskell programs in any language?

Okay, probably not.

We would like to suggest, however, that a determined
programmercan write functional programs in C++. In
this short article, we will introduce you to FC++, a library
that supports functional programming in C++. If you are
using functional languages, reading this article will prob-
ably not motivate you to abandon them in favor of C++.
Nevertheless, FC++ is thought-provoking both for func-
tional programmers and for object-oriented programmers.
It shows how polymorphic, higher-order functions can be
expressed in C++ and provides a good platform for com-
bining the functional and object-oriented paradigms. We
invite you to take a tour of FC++ and catch a glimpse of
the possibilities.

1 What is FC++?

FC++ [5] is a library for doing functional programming
in C++. The library comprises a general framework for
creating FC++ functions (which we sometimes callfunc-
toids) as well as about 100 common/useful functions.

Using classes to represent functions and objects to rep-
resent closures is a standard technique in object-oriented
languages. Among others, the Pizza language [6] uses

this approach in translating functionally-flavored con-
structs to Java code. Along the same lines, the C++
Standard Library contains some basic functionality for
expressing and manipulating functions. C++ even al-
lows classes representing functions to be used with the
usual function call notation, by overloading the function
application operator,operator() . Nevertheless, the
C++ Standard Library stops short of providing a general
framework for functional programming. Other libraries
have attempted to fill the gap by supplying either syntax
support (e.g., a “lambda” operator for anonymous func-
tions) [3][8] or a framework for expressing higher-order
function types [4].

FC++ is distinguished from all such libraries by its
powerful type system. FC++ offers complete support
for manipulating polymorphic functions—passing them
as arguments to other functions and returning them as
results. For instance, FC++ supports higher-order poly-
morphic operators likecompose() : a function that takes
two (possibly polymorphic) functions as arguments and
returns a (possibly polymorphic) result (the composition).
Thus, FC++ can be used to embed a lot of the capabili-
ties of modern functional programming languages (like
Haskell or ML) in C++. Indeed, FC++ comes with a
wealth of useful pre-defined functions—a large part of
the Haskell Standard Prelude—as well as support for lazy
evaluation, including a “lazy list” data structure and a
number of functions that operate on these lazy lists. The
library also contains a number of support functions for
transforming FC++ data structures into the data structures
of the C++ Standard Template Library (STL), and vice
versa, as well as operators for promoting normal func-
tions into FC++ functoids. Finally, the library supplies
“indirect functoids”: run-time variables that can refer to
any functoid with a given monomorphic type signature.

The library is implemented in ISO Standard C++. Its
implementation relies heavily on C++ templates and the
C++ type system. Unlike other libraries for functional

1

SIGPLANACM

Functional Programming
#include <assert.h>
#include <string>
#include "prelude.h"

int main() {
int x=1, y=2, z=3;
std::string s="foo", t="bar", u="qux";

List<int> li =
cons(x,cons(y,cons(z,NIL)));

List<std::string> ls =
cons(s,cons(t,cons(u,NIL)));

assert(head(li) == 1);
// list_with() makes short lists
assert(tail(li) == list_with(2,3));

ls = compose(tail,tail)(ls);
assert(head(ls) == "qux");
assert(tail(ls) == NIL);

}

Figure 1: Lists and compose

programming in C++, FC++ does not focus on improving
the syntax using either the preprocessor (e.g.,#define)
or overloading techniques (like expression templates).
Such approaches have value but are brittle. Instead,
the value of FC++ is in its type system for polymor-
phic functions—providing a nicer syntactic front-end for
defining functions is an orthogonal (and perhaps sec-
ondary) issue. The FC++ library currently comprises
about 3000 lines of C++ code. We are continuing to
develop the library to make it both more expressive and
more convenient to use.

2 What can I do with FC++?

Now let's introduce you to the library, by walking through
some examples that demonstrate the capabilities of FC++.

Many of the examples will use lists, so we begin with
code that shows a little about theList class (Figure 1). A
List is parameterized by the type of its elements; in the
listing, we show both a list ofint s and a list ofstring s.
The usual operatorscons() , head() , tail() , and the
constantNIL work as you would expect.

This example also demonstrates the capabilities of
FC++ for manipulating polymorphic functions. The
tail() function takes a “list of T” and returns a “list
of T” where T can be any type; in Haskell, for example,
we would write its type as

tail :: [a] -> [a].

Thecompose() operator composes two unary functions,
that is, compose(f, g) yields a new functionh such
thath(x) is the same asf(g(x)) . Thecompose() op-
erator can take polymorphic functions as parameters and
return a polymorphic function as a result. In Haskell, we
would describe the type ofcompose as

compose :: (a->b) -> (c->a) -> (c->b).

As a result,compose(tail,tail) is a polymorphic
function with the same signature astail .

FC++ lists are lazy. For example, we can say

List<int> integers = enumFrom(1);

to create an infinite list of all the integers 1, 2, 3, Ele-
ments of the list are only evaluated as they are requested.
We can perform various operations lazily on such lists,
such as thefilter() function defined in the library that
returns only those elements of a list which meet a certain
predicate. For example,

List<int> evens = filter(even, integers);

creates a list of the even integers (2, 4, 6, . . .);even is an-
other function defined in the FC++ library. We can easily
define our own predicates by writing normal C++ func-
tions, for example

bool prime(int x) { ... }

and then use, for example,

filter(ptr_to_fun(&prime), integers);

to compute a list of primes. The FC++ function
ptr_to_fun() transforms a normal C++ function into
a functoid. It is one of a number of library members
which provide the interface between FC++ functoids and
both C functions and C++ standard library function ob-
jects. Figure 2 shows a complete program, which also
demonstratestake() —a function that selects the firstN
elements of a list and discards the rest.

FC++ functoids support currying. If we start with the
list of numbers 1-3:

List<int> integers = list_with(1,2,3);

we can generate the list 2-4 withmap(inc,integers)
whereinc() is a function that increments a number by
1, andmap() applies a function to each element to a list.
Suppose instead we want to add 2 toeach element of the
list. Of course, we could say

2

SIGPLANACM

Functional Programming
#include <assert.h>
#include "prelude.h"

bool prime(int x) {
if(x<2) return false;
for(int i=2; i <= x/2; i++)

if(x%i == 0) return false;
return true;

}

int main() {
List<int> integers = enumFrom(1);
assert(take(3,integers) ==

list_with(1,2,3));

List<int> evens = filter(even,integers);
assert(take(3,evens)==list_with(2,4,6));

List<int> primes =
filter(ptr_to_fun(&prime), integers);

assert(take(3,primes) ==
list_with(2,3,5));

}

Figure 2: Lazy operations and C++ functions

map(compose(inc,inc), integers)

but we can also just say

map(plus(2), integers).

The FC++ library defines functionplus() such that
plus(x,y) yields x+y . (Indeed, the library contains
named functions for all of the common operators.) Like
all functoids in the FC++ library,plus is curryable. That
is to say,plus(2) yields a new functionf(x) , where
f(x) = 2 + x .

As you might expect, currying of polymorphic func-
tions is fully supported and may yield other polymor-
phic functions. In fact, currying is implemented by
FC++ operators that are themselves (higher-order poly-
morphic) functoids. We can use these operators explic-
itly, if needed. For instance,bind1of2() is a function
that takes a binary function and binds its first argument
to a particular value, resulting in a unary function. Thus,
bind1of2(plus, 2) is the same asplus(2) . We
can also writeplus(2,_) to mean the same thing; “_”
is a special value in FC++ that serves as a placeholder
for arguments to be curried. Figure 3 shows a number of
examples which demonstrate currying in FC++.

The FC++ library supplies users with many useful
predefined functions. More than 50 functions from the

#include <assert.h>
#include "prelude.h"

List<int> answer;
// holds the answer of upcoming
// computations for exposition purposes

void check(List<int> l)
{ assert(l==answer); }

int main() {
List<int> integers = list_with(1,2,3);

// each small group of statements
// demonstrates similar functionality with
// different syntax

answer = list_with(2,3,4);
check(map(inc, integers));
check(map(plus(1), integers));

answer = list_with(3,4,5);
check(map(compose(inc,inc),integers));
check(map(plus(2), integers));

answer = list_with(0,-1,-2);
check(map(bind1of2(minus,1),integers));
check(map(minus(1), integers));
check(map(minus(1,_), integers));

answer = list_with(0,1,2);
check(map(bind2of2(minus,1),integers));
check(map(minus(_,1), integers));

// map can also be curried
answer = list_with(3,4,5);
check(map(plus(2))(integers));
check(map(_, integers)(plus(2)));

}

Figure 3: Currying examples

3

SIGPLANACM

Functional Programming
#include <assert.h>
#include "prelude.h"

int f(int x, int y) { return 3*x + y; }

class Foo {
int n;

public:
Foo(int nn) : n(nn) {}
int bar(int x, int y) const
{ return n*x + y; }

};

int main() {
assert(ptr_to_fun(&f)(3)(1) == 10);

Foo foo(3);
assert(ptr_to_fun(&Foo::bar)(&foo,3)(1)

== 10);
}

Figure 4: FC++ and native C++ functions

Haskell Standard Prelude are included in the library. We
have already seen a few such functions, likemap() ,
take() , filter() , and enumFrom() . FC++ also
supportsuntil() , foldr() , iterate() , cycle() ,
span() , zipWith() , and many others. These prede-
fined functions make it easy for users of the FC++ library
to rapidly compose algorithms to suit their needs using
functional programming techniques.

FC++ has interfaces to normal C++ functions and
the C++ standard library. We have already encountered
ptr_to_fun() , which converts a normal function into
an FC++ functoid. Theptr_to_fun() operator works
on member functions as well, creating a functoid which
takes a pointer to the receiver object as an extra first pa-
rameter. Figure 4 showsptr_to_fun() applied to both
normal and member functions, and demonstrates that the
results are functoids by using the currying ability of FC++
functoids.

To interface to the C++ standard library data structures,
FC++ supports iterators. Figure 5 shows that the List
class supports iterators of the STL style. This makes con-
verting to and from STL data structures easy.

The functoids we have seen thus far are calleddirect
functoidsin the FC++ library, because calls to them are
statically bound (they are called directly). FC++ also sup-
portsindirect functoidsvia theFunN classes. These func-
toids are dynamically bound, and thus can change their
“function values” by assignment. Indirect functoids are

#include <assert.h>
#include <vector>
#include <algorithm>
#include "prelude.h"

int main() {
List<int> l = take(5, enumFrom(1));
std::vector<int> v(5);
std::copy(l.begin(),l.end(),v.begin());
std::reverse(v.begin(), v.end());
List<int> r(v.begin(), v.end());
assert(r == list_with(5,4,3,2,1));

}

Figure 5: FC++ and STL

described by their monomorphic type signature, and vari-
ables of typeFunN can be bound to any function with
the right signature. For example, aFun1<int,bool>

describes a one-argument function that takes anint and
returns abool , whereas aFun2<int,int,string> de-
scribes a two-argument function which takes twoints

and returns astring . The functionmakeFunN() con-
verts a direct functoid into an indirect one. In the case of
polymorphic functions, a monomorphic instance must be
selected withmonomorphizeN() . In fact, both conver-
sions can be performed implicitly when an indirect func-
toid variable is assigned a direct functoid value. Figure 6
gives some examples of indirect functoids.

3 Where is the magic?

In the previous section we saw how functoids can be used.
We also saw how to convert regular C++ functions or
methods into functoids, so that they can be used with the
FC++ pre-defined functionality, including higher-order
operators like currying andcompose . Nevertheless, we
have not shown you how the polymorphic functoids in-
side FC++ (compose , map, etc.) are implemented or how
to define your own polymorphic functoids. To simplify
the discussion, we will concentrate on the key insights
instead of specifics. The examples of this section will be
both more simplified and more complicated than actual
code: we will eliminate some C++ syntax verbosity but
will also avoid several FC++ shorthands in order to ex-
pose the implementation. More detailed instructions can
be found in the FC++ tutorial and documentation [1].

To create your own polymorphic functoid, you need
to create a class with two main elements: a template
operator() and a member structure template named

4

SIGPLANACM

Functional Programming

#include <assert.h>
#include "prelude.h"

bool prime(int x) {
if(x<2) return false;
for(int i=2; i <= x/2; i++)

if(x%i == 0) return false;
return true;

}

bool big(int x) { return x > 100; }

int main() {
Fun1<int,bool> f =

makeFun1(ptr_to_fun(&prime));
assert(f(11) == true);
f = makeFun1(ptr_to_fun(&big));
assert(f(11) == false);

List<int> l = list_with(1,2,3);

// explicit conversion of "tail" to
// an indirect functoid
Fun1<List<int>,List<int> > g =

makeFun1(monomorphize1<List<int>,
List<int> >(tail));

assert(g(l) == list_with(2,3));

// implicit conversion
g = init;
assert(g(l) == list_with(1,2));

}

Figure 6: Indirect functoids examples

Sig . To make things concrete, consider the definition of
map (or rather, the classMap, of which map is a unique
instance):

struct Map {
template <class F, class L>
struct Sig {

typedef
List<F::Sig<L::ElementType>::ResultType>

ResultType;
};

template <class F, class T>
Sig<F, List<T> >::ResultType operator()

(const F& f, const List<T>& l) const
{

if(null(l))
return NIL;

else
return cons(f(head(l)),

lazy(Map(), f, tail(l)));
}

};

Theoperator() will allow instances of this class to
be used with regular function call syntax. What is special
in this case is that the operator is a template, which means
that it can be used with arguments of multiple types.
When an instance ofMap is used with argumentsf andl ,
unification will be attempted between the types off and
l , and the declared types of the parameters (const F& ,
and const List<T>&). The unification will yield the
values of the type parametersF and T of the template.
This will determine the return type of the functoid.

Now, let's examine theSig member class of theMap
class. By FC++ convention, theSig member should be
a template over the argument types of the function you
want to express (in this case the function typeF and the
list typeL). TheSig member template is used to answer
the question “what type will your function return if I pass
it these argument types?” The answer in theMapcode is:

List<F::Sig<L::ElementType>::ResultType>

This means: “map returns aList of whatF would return
if passed an element like the ones in listL”.

In Haskell, one would express the type signature of
map as:

map :: (a -> b) -> [a] -> [b]

The Sig members of FC++ functoids essentially en-
code the same information, but in a computational form:

5

SIGPLANACM

Functional Programming
Sig s are type-computing compile-time functions that are
called by the C++ unification mechanism for function
templates and implement the FC++ type system. This
type system is completely independent from the native
C++ type system—map' s type as far as C++ is concerned
is just class Map .1 Other FC++ functoids, however,
can read the FC++ type information from theSig mem-
ber of Map and use it in their own type computations.
Themap functoid itself uses that information from what-
ever functoid happens to be passed as its first argument
(see the F::Sig<L::ElementType>::ResultType

expression, above).

4 Limitations

As you may expect, functional programming in C++ is
not without its limitations. The most obvious one for
functional programmers is the lack of a construct like
“lambda”. C++ has no built-in support for defining new
functions inside an expression or creating automatic clo-
sures, capturing all variables from the local environment.
There are a number of “lambda libraries” for C++ [3][8]
which use expression-templates to simulate lambda syn-
tax (sometimes rather convincingly). Even these libraries,
however, cannot create automatic closures; to truly add
“lambda” to C++ would require a language extension.

A more thorough discussion of the capabilities and lim-
itations of FC++ can be found in [5].

5 Applications and Conclusions

The FC++ library supports functional programming in
C++, by enabling users to write and manipulate poly-
morphic and higher-order functions. The library has a
smooth interface to the rest of C++, so that functional
code and OO code can blend well. In this paper we gave
an overview of FC++. More information can be found in
the references [1][5][7].

FC++ is useful for functional programmers because
it provides an alternative, commonly available platform
for implementing familiar designs. An example of this
approach is the XR (Exact Real) library [9]. XR uses
the FC++ infrastructure to provide exact (orconstructive)
real-number arithmetic, using lazy evaluation.

1(Actually, this is a small lie—map is not an instance ofMap, but
rather an instance ofCurryable2<Map> . Curryability is expressed
via theCurryableN combinators in FC++.)

FC++ is also an interesting platform for object-oriented
programming, because it allows functional techniques to
be used in conjunction with common OO styles. In an-
other paper [7], we show how a number of OO design
patterns [2] can be simplified, generalized, or made safer
using functional programming techniques.

References

[1] The FC++ web page:
http://www.cc.gatech.edu/ �yannis/fc++/

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides,Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[3] The lambda library. http://lambda.cs.utu.fi/

[4] K. L äufer, “A Framework for Higher-Order Func-
tions in C++”, Proc. Conf. Object-Oriented Tech-
nologies (COOTS), Monterey, CA, June 1995.

[5] B. McNamara and Y. Smaragdakis, “FC++: Func-
tional Programming in C++”,Proc. International
Conference on Functional Programming (ICFP),
Montreal, Canada, September 2000.

[6] M. Odersky and P. Wadler, “Pizza into Java: Translat-
ing theory into practice”,ACM Symposium on Prin-
ciples of Programming Languages, 1997 (PoPL 97).

[7] Y. Smaragdakis and B. McNamara, “Bridging Func-
tional and Object-Oriented Programming” Georgia
Tech CoC Tech. Report 00-37, also available in [1].

[8] J. Striegnitz,FACT! The Functional Side of C++,
http://www.fz-juelich.de/zam/FACT .

[9] The XR Exact Real Home Page. http://

www.btexact.com/people/briggsk2/XR.html

Brian McNamara is a PhD student at the Georgia Insti-
tute of Technology. His research interests include pro-
gramming language design and implementation, as well
as program analysis and formal verification methods.

Yannis Smaragdakis is an Assistant Professor at the
Georgia Institute of Technology. His research interests
include programming language design and implemen-
tation but also memory hierarchies, especially from an
operating systems standpoint. His work has received
high praise—Charles Simonyi once called him a “master
hacker” for successfully fiddling with the climate control
system in his mansion. (“His” is intentionally left am-
biguous.)

6

