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Abstract

We describe the FC++ library, a rich library supporting functional programming in C++.

Prior approaches to encoding higher order functions in C++ have su�ered with respect to

polymorphic functions from either lack of expressiveness or high complexity. In contrast,

FC++ o�ers full and concise support for higher-order polymorphic functions through a

novel use of C++ type inference.

The FC++ library has a number of useful features, including a generalized mechanism to

implement currying in C++, a \lazy list" class which enables the creation of \in�nite data

structures", a subtype polymorphism facility, and an extensive library of useful functions,

including a large part of the Haskell Standard Prelude.

The FC++ library has an eÆcient implementation. We show the results of a number of

experiments which demonstrate the value of optimizations we have implemented. These

optimizations have improved the run-time performance by about an order of magnitude

for some benchmark programs that make heavy use of FC++ lazy lists. We also make an

informal performance comparison with similar programs written in Haskell.

1 Motivation and Overview

It is a little known fact that part of the C++ Standard Library consists of code

written in a functional style. Although the C++ Standard Library o�ers rudimen-

tary support for higher order functions and currying, it stops short of supplying

a sophisticated and reusable module for general purpose functional programming.

This is the gap that our work aims to �ll. The result is a full embedding of a

simple pure functional language in C++, using the extensibility capabilities of the

language and the existing compiler and run-time infrastructure.

At �rst glance it may seem that C++ is antithetical to the functional paradigm.

The language not only supports direct memory manipulation but also only has

primitive capabilities for handling functions. Function pointers are �rst-class enti-

ties, but they are of little use since new functions cannot be created on the 
y (e.g.

as specializations of existing functions by �xing some state information). Neverthe-

less, the elements required to implement a functional programming framework are

already in the language. The technique of representing �rst-class functions using

classes is well known in the object-oriented world. Among others, the Pizza language

(Odersky and Wadler, 1997) uses this approach in translating functionally-
avored

constructs to Java code. The same technique is used in previous implementations

of higher-order functions in C++ (Kiselyov, 1998; L�aufer, 1995). C++ also allows
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users to de�ne a familiar syntax for function-classes, by overloading the function

application operator, \()". Additionally one can declare methods so that they are

prevented from modifying their arguments; this property is enforced statically by

C++ compilers. Finally, using the C++ inheritance capabilities and dynamic dis-

patch mechanism, one can de�ne variables that range over all functions with the

same type signature. In this way, a C++ user can \hijack" the underlying language

mechanisms to provide a functional programming model.

All of the above techniques are well-known and have been used before. In fact,

several researchers in the recent past (Striegnitz, 2001; Kiselyov, 1998; J�arvi and

Powell, 2002; L�aufer, 1995; Meijer and Kettner, 2000) have (re)discovered that C++

can be used for functional programming. Nevertheless, all of the above approaches,

as well as that of the C++ Standard Library, su�er from one of two drawbacks:

� High complexity when polymorphic functions are used : Polymorphic functions

may need to be explicitly turned into monomorphic instances before they

can be used. This causes the implementation to become very complex. L�aufer

observed in (1995): \...the type information required in more complex appli-

cations of the framework is likely to get out of hand, especially when higher

numbers of arguments are involved."

� Lack of expressiveness : In order to represent polymorphic functions, one can

use C++ function templates. This approach does not su�er from high com-

plexity of parameterization, because the type parameters do not need to be

speci�ed explicitly whenever a polymorphic function is used. Unfortunately,

function templates cannot be passed as arguments to other function tem-

plates. Thus, using C++ function templates, polymorphic functions cannot

take other polymorphic functions as arguments. This is evident in the C++

Standard Library, where \higher order" polymorphic operators like compose1,

bind1st, etc. are not \functions" inside the Standard Library framework and,

hence, cannot be passed as arguments to themselves or other operators.

Our work addresses both of the above problems. Contrary to prior belief (see

L�aufer (1995), who also quotes personal communication with Dami) no modi�-

cation to the language or the compiler is needed. Instead, we are relying on an

innovative use of C++ type inference. E�ectively, our framework maintains its own

type system, in which polymorphic functions can be speci�ed and other polymor-

phic functions can recognize them as such.

[Important note: Since C++ type inference is in the core of our technique, a dis-

claimer is in order: C++ type inference is a uni�cation process matching the types of

actual arguments of a function template to the declared polymorphic types (which

may contain type variables, whose value is determined by the inference process).

C++ type inference does not solve a system of type equations and does not relieve

the programmer from the obligation to specify type signatures for functions. Thus,

the term \C++ type inference" should not be confused with \type inference" as

employed in functional languages like ML or Haskell. The overloading is unfortu-

nate but unavoidable as use of both terms is widespread. We will always use the

pre�x \C++" when we refer to \C++ type inference".]
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The result of our approach is a convenient and powerful parametric polymorphism

scheme that is well integrated in the language: with the FC++ library, C++ o�ers

as much support for higher-order polymorphic functions as it does for native types

(e.g. integers and pointers).

Apart from the above novelty, FC++ also o�ers a few more new elements:

� First, we de�ne a subtyping policy for functions of FC++, thus supporting

subtype polymorphism. The default policy is what one would expect: a func-

tion A is a subtype of function B, i� A and B have the same number of

arguments, all arguments of B are subtypes of the corresponding arguments

of A, and the return value of A is a subtype of the return value of B. (Using

OO typing terminology, we say that our policy is covariant with respect to

return types and contravariant with respect to argument types.) Subtype sub-

stitutability is guaranteed; a function Animal* -> Dog* can be used where a

function Mammal* -> Mammal* is expected.

� Second, FC++ provides reusable combinators to support automatic currying.

Curryable functions can be called with a subset of the arguments they expect,

and those values will be bound, resulting in a new function that expects the

remainder of the arguments.

� Third, FC++ has a high level of technical maturity. For instance, compared

to L�aufer's approach, we achieve an equally safe but more eÆcient implemen-

tation of the basic framework for higher order functions. In a previous paper

(McNamara and Smaragdakis, 2000a), we illustrated that our implementation

was 4 to 8 times faster than L�aufer's. In this paper, we describe a number

of new optimizations we have recently applied to the library, and demon-

strate that the performance has increased by almost an order of magnitude

compared to our old implementation.

Additionally, FC++ builds signi�cant functionality on top of the basic frame-

work. We export two fairly mature reference-counting \pointer" classes to library

users, so that use of C++ pointers can be completely eliminated at the user level.

We de�ne a wealth of useful functions (a large part of the Haskell Standard Pre-

lude) to enhance the usability of FC++ and demonstrate the expressiveness of

our framework. It should be noted that de�ning these functions in a convenient,

reusable form is possible exactly because of the support for polymorphic functions

o�ered by FC++. It is no accident that such higher-order library functions are

missing from other C++ libraries: supplying explicit types would be tedious and

would render the functions virtually unusable.

The rest of the paper is organized as follows: Section 2 gives a brief introduction

to the library with some short code examples. Section 3 describes direct functoids.

(We use the term \functoid" to describe our implementation of functions; the term

is borrowed from L�aufer (1995).) Direct functoids enable the creation of higher-

order polymorphic functions, and are one of the key innovations of FC++. Sec-

tion 4 describes indirect functoids. Indirect functoids are monomorphic, but they

are �rst-class and support subtype polymorphism. Section 5 demonstrates how di-

rect functoids simplify the task of programming with polymorphic functions in
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FC++. Section 6 describes two other features of FC++. Section 6.1 describes how

currying is implemented in FC++. Reusable combinators can be wrapped around

any functoid to make it curryable, and we introduce a nice syntax for binding a

subset of a functions' arguments. Section 6.2 describes how subtype polymorphism

is implemented for indirect functoids. Section 7 describes how FC++ interfaces

with its host language. Section 8 describes the expressiveness of the library, as well

as the fundamental limitations imposed by C++. Section 9 discusses the run-time

performance of the library. Section 10 analyzes the performance and discusses a

number of optimizations we have applied to the implementation. Section 11 de-

scribes some details of the lazy list implementation in FC++. Section 12 gives a

summarizing overview of the library and a description of the organization of its

modules. Section 13 describes a few applications of the library. Section 14 discusses

related work.

2 Library Introduction

In this section we give a brief overview of how the FC++ library is used. Figure 1

will serve as a running example to illustrate the main features of the library.

FC++ lists support the usual list interface; cons(), null(), head(), and tail()

are among the basic functions that work on Lists. Lists are parameterized by the

data type they contain; Lists and the associated functions are polymorphic. Part

(A) of Figure 1 illustrates some basic list code.

FC++ has a number of higher-order functions, like compose(), which can take

polymorphic functions as arguments. Part (B) of Figure 1 illustrates that compose(tail,tail)

yields a new (polymorphic) function which discards the �rst two elements of a list.

FC++ is the only C++ library that enables the user to generally combine higher-

order functions with polymorphic ones; with FC++, polymorphic functions may be

passed as arguments to other functions and returned as results.

FC++ Lists are lazy. Part (C) of Figure 1 demonstrates in�nite lists in FC++;

the elements of the list are produced only as they are needed.

FC++ functoids support currying. For example, in Part (D) of Figure 1, plus()

is a two-argument function, but it can be called with just one argument, yielding

a new one-argument function as a result. In the example, map() applies this new

function to each element of the list, yielding a new lists where all of the values have

been incremented by 1. As seen in the example, map() is also curryable. To bind

values to arguments other than the initial arguments, an underscore can be used

as a placeholder for arguments that should be curried.

The FC++ library contains more than 50 useful functions from the Haskell Stan-

dard Prelude (Peyton-Jones and Hughes, 1999). The prior examples have already

used familiar functions like map() and filter(); FC++ o�ers dozens of such gen-

eral functions, including take(), which selects the �rst N elements of a list, and

foldl1() which left-accumulates all of the values in a list using a given function.

Part (E) of Figure 1 demonstrates such functionality.

FC++ has \indirect functoids", run-time variables which can be bound to any

function with a given monomorphic signature. Part (F) of Figure 1 illustrates an
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int x=1, y=2, z=3;

string s="foo", t="bar";

// (A) List basics

List<int> li = cons( x, cons( y, cons( z, NIL )));

List<string> ls = cons( s, cons( t, NIL ));

assert( head(ls) == "foo" );

assert( length(tail(li)) == 1 );

// (B) Higher-order polymorphic compose()

li = compose( tail, tail )(li);

assert( head(li) == 3 );

// (C) Laziness (infinite lists)

li = enumFrom(1); // [1,2,3,...]

li = filter(even,li); // [2,4,6,...]

// (D) Currying

li = map( plus(1), li );

li = map( plus(1) )( li );

li = map( _, li )( plus(1) );

// (E) Haskell Standard Prelude

li = take( 5, enumFrom(1) );

assert( foldr(plus,3,li) == 18 );

assert( foldl1(plus,ls) == "foobar" );

// (F) Indirect functoids

Fun2<int,int,int> f = monomorphize1<int,int,int>( plus );

assert( f(3,2) == 5 );

f = minus; // implicit conversion

assert( f(3,2) == 1 );

Fig. 1. Some examples of what FC++ can do

indirect functoid variable f of type Fun2<int,int,int>|a two-argument function

which takes two integer arguments and returns an integer result. This variable can

be bound to di�erent functions with the right signature, for instance, plus() or

minus(). Since plus() is a polymorphic function, a monomorphic instance must

be selected to be bound to the indirect functoid variable. This monomorphizing

conversion may be done either explicitly or implicitly.

3 Direct Functoids

FC++ represents polymorphic functions with \direct functoids". We will begin by

describing the special case of monomorphic direct functoids, because they are simple

and serve as a good introduction for readers not familiar with C++. Then we shall

move on to describe polymorphic direct functoids. Later, in Section 5, we illustrate

how FC++ simpli�es the use of polymorphic functions in C++ as compared to

other approaches.
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3.1 Monomorphic Direct Functoids

C++ is a class-based object-oriented language. Classes are de�ned statically using

the keywords struct or class. C++ provides a way to overload the function call

operator (written as a matching pair of parentheses: \()") for classes. This enables

the creation of objects which look and behave like functions (function objects). For

instance, we show below the creation and use of function objects that double and

add one to a number:

struct TwoTimes {

int operator()( int x ) { return 2*x; }

} twoTimes;

struct Inc {

int operator()( int x ) { return x+1; }

} inc;

twoTimes(5) // returns 10

inc(5) // returns 6

The problem with function objects is that their C++ types do not re
ect their

\function" types. For example, both twoTimes and inc represent functions from

integers to integers. To distinguish from the C++ language type, we say that the

signature of these objects is

int -> int

(the usual functional notation is used to represent signatures). As far as the C++

language is concerned, however, the types of these objects are TwoTimes and Inc.

(Note our convention of using an upper-case �rst letter for class names, and a lower-

case �rst letter for class instance names.) Knowing the signature of a function object

is valuable for further manipulation (e.g. for enabling parametric polymorphism,

as will be discussed in Section 3.2). Thus, we would like to encapsulate some rep-

resentation of the type signature of TwoTimes in its de�nition. The details of this

representation will be �lled in Section 3.2, but for now it suÆces to say that each

direct functoid has a member called Sig (e.g. TwoTimes::Sig) that represents its

type signature. Sig is not de�ned explicitly by the authors of monomorphic direct

functoids|instead it is inherited from classes that hide all the details of the type

representation. For instance, TwoTimes would be de�ned as:

struct TwoTimes : public CFunType<int, int> {

int operator()( int x ) { return 2*x; }

} twoTimes;

That is, CFunType is a C++ class template whose only purpose is to de�ne

signatures. A class inheriting from CFunType<A,B> is a 1-argument monomorphic

direct functoid that encodes a function from type A to type B. In general, the

template CFunType<A1,A2,...,AN,R> is used to de�ne signatures for monomorphic

direct functoids of N arguments.
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Note that in the above de�nition of TwoTimes we redundantly specify the type

signature information (int -> int): once in the de�nition of operator() (for com-

piler use) and once in CFunType<int,int> (for use by FC++). There seems to be

no way to avoid this duplication with standard C++, but non-standard extensions,

like the GNU C++ compiler's typeof operator, address this issue.

Monomorphic direct functoids have a number of advantages over normal C++

functions: they can be passed as parameters and returned as results, they can

capture state, etc. Native C++ functions can be converted into monomorphic direct

functoids using the operator ptr_to_fun of FC++. It is worth noting that the

C++ Standard Template Library (STL) also represents functions using classes with

an operator(). FC++ provides conversion operations to promote STL function

objects into monomorphic direct functoids.

3.2 Polymorphic Direct Functoids

Polymorphic direct functoids support parametric polymorphism. Consider the Haskell

function tail, which discards the �rst element of a list. Its type would be described

in Haskell as

tail :: [a] -> [a]

Here a denotes any type; tail applied to a list of integers returns a list of integers,

for example.

One way to represent a similar function in C++ is through member templates:

struct Tail {

template <class T>

List<T> operator()( const List<T>& l );

} tail;

Note that we still have an operator() but it is now a member function template.

This means that there are multiple such operators|one for each type. C++ type

inference is used to produce concrete instances of operator() for every type inferred

by a use of the Tail functoid. Recall that C++ type inference is a uni�cation process

matching the types of actual arguments of a function template to the declared

polymorphic types. In this example, the type List<T> contains type variable T,

whose type value is determined as a result of the C++ type inference process. For

instance, we can refer to tail for both lists of integers and lists of strings, instead

of explicitly referring to tail<int> or tail<string>. For each use of tail, the

language will infer the type of element stored in the list, based on tail's operand.

As discussed earlier, a major problem with the above idiom is that the C++

type of the function representation does not re
ect the function type signature. For

instance, we will write the type signature of the tail function as:

List<T> -> List<T>

but the C++ type of variable tail is just Tail.
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The solution is to de�ne a member, which we call Sig, that represents the type

signature of the polymorphic function. That is, Sig is our way of representing

\arrow" types. Sig is a template class parameterized by the argument types of the

polymorphic function. For example, the actual de�nition of Tail is:

struct Tail {

template <class L>

struct Sig : public FunType<L,L> {};

template <class T>

List<T> operator()( const List<T>& l ) const

{ return l.tail(); }

} tail;

where FunType is used for convenience, as a reusable mechanism for naming argu-

ments and results.

In reality, the Sig member of Tail, above, does not have to represent the most

speci�c type signature of function tail. Instead it is used as a compile-time function

that computes the return type of function tail, given its argument type. This is

easy to see: the Sig for Tail just speci�es that if L is the argument type of Tail,

then the return type will also be L. The requirement that L be an instance of the

List template does not appear in the de�nition of Sig (although it could).

The above de�nition of Tail is an example of a polymorphic direct functoid. In

general, a direct functoid is a class with a member operator() (possibly a template

operator), and a template member class Sig that can be used to compute the return

type of the functoid given its argument types. Thus the convention is that the Sig

class template takes the types of the arguments of the operator() as template

parameters. As described in Section 3.1, for monomorphic direct functoids, the

member class Sig is hidden inside the CFunType classes, but in essence it is just

a template computing a constant compile-time function (i.e., returning the same

result for each instantiation).

The presence of Sig in direct functoids is essential for any sophisticated manip-

ulation of function objects (e.g. most higher-order functoids need it). For example,

in Haskell we can compose functions using \.":

(tail . tail) [1,2,3] -- evaluates to [3]

In C++ we can similarly de�ne the direct functoid compose to act like \.", enabling

us to write expressions like

compose(tail,tail).

The de�nition of compose uses type information from tail as captured in its Sig

structure. Using this information, the type of compose(tail,tail) is inferred and

does not need to be speci�ed explicitly. More speci�cally, the result of a composition

of two functoids F and G is a functoid that takes an argument of type T and returns

a value of type:

F::Sig< G::Sig<T>::ResultType >::ResultType
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that is, the type that F would yield if its argument had the type that G would yield

if its argument had type T.1 This example is typical of the kind of type computation

performed at compile-time using the Sig members of direct functoids.

In essence, FC++ de�nes its own type system which is quite independent from

C++ types. The Sig member of a direct functoid de�nes a compile-time function

computing the functoid's return type from given argument types. The compile-time

computations de�ned by the Sig members of direct functoids allow us to perform

type inference with fully polymorphic functions without special compiler support.

Type errors arise when the Sig member of a functoid attempts to perform an

illegal manipulation of the Sig member of another functoid. All such errors will be

detected statically when the compile-time type computation takes place|that is,

when the compiler tries to instantiate the polymorphic operator().

Polymorphic direct functoids can be converted into monomorphic ones by speci-

fying a concrete type signature via the operator monomorphizeN. For instance:

monomorphize1<List<int>, int>( head )

produces a monomorphic version of the head list operation for integer lists.

In Section 5 we demonstrate how using direct functoids greatly simpli�es the task

of programming with polymorphic functions in C++, by drawing a comparison with

the alternatives. One of the alternatives involves indirect functoids, so we discuss

them next.

4 Indirect Functoids

Direct functoids are not �rst-class entities in the C++ language. Most notably,

one cannot de�ne a (run-time) variable ranging over all direct functoids with the

same signature. We can overcome this by using a C++ subtype hierarchy with a

common root for all functoids with the same signature and declaring the function

application operator, \()", to be virtual (i.e., dynamically dispatched). In this

way, the appropriate code is called based on the run-time type of the functoid

to which a variable refers. On the other hand, to enable dynamic dispatch, the

user needs to refer to functions indirectly (through pointers). Because memory

management (allocation and deallocation) becomes an issue when pointers are used,

we encapsulate references to function objects using a reference counting mechanism.

This mechanism is completely transparent to users of FC++: from the perspective

of the user, function objects can be passed around by value. It is worth noting that

our encapsulation of these pointers inside indirect functoids prevents the creation

of cyclical data structures,2 thus avoiding the usual pitfalls of reference-counting

garbage collection.

1 For syntactically correct C++, the type should be written typename F::template Sig<

typename G::template Sig<T>::ResultType >::ResultType. Throughout the paper, we omit
the typename and template keywords for simplicity of exposition, except in complete program
listings.

2 Actually, it is possible to create cyclic data structures within indirect functoids, but not without
a good understanding of the indirect functoid implementation details that are necessary to
circumvent the encapsulation. Users cannot leak memory \by accident".
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Indirect functoids are classes that follow the above design. An indirect functoid

representing a function with N arguments of types A1, ..., AN and return type R,

is a subtype of class

FunN<A1,A2...,AN,R>.

For instance, one-argument indirect functoids with signature

A -> R

are subtypes of class Fun1<A,R>. This class is the reference-counting wrapper of

class Fun1Impl<A,R>. Both classes are produced by instantiating the templates

shown below:

template <class Arg1, class Result>

class Fun1 : public CFunType<Arg1,Result> {

Ref<Fun1Impl<Arg1,Result> > ref;

...

public:

typedef Fun1Impl<Arg1,Result>* Impl;

Fun1( Impl i ) : ref(i) {}

Result operator()( const Arg1& x ) const

{ return ref->operator()(x); }

...

};

template <class Arg1, class Result>

struct Fun1Impl : public CFunType<Arg1,Result> {

virtual Result operator()( const Arg1& ) const =0;

virtual ~Fun1Impl() {}

};

(Note: The ellipsis (...) symbol in the above code is used to denote that parts of the

implementation have been omitted for brevity. These parts implement our subtype

polymorphism policy and will be discussed in Section 6.2. The Ref class template

implements our reference-counted \pointers" and will be discussed in Section 10.3.

For this internal use, any simple reference counting mechanism would be suÆcient.)

Concrete indirect functoids can be de�ned by subclassing a class Fun1Impl<A,R>

and using instances of the subclass to construct instances of class Fun1<A,R>. Vari-

ables can be de�ned to range over all functions with signature

A -> R.

For instance, if Inc is de�ned as a subclass of Fun1Impl<int,int>, the following

de�nes an indirect functoid variable f and initializes it to an instance of Inc:

Fun1<int, int> f (new Inc);

In practice, however, this de�nition would be rare because it would require that

Inc be de�ned as a monomorphic function. As we have seen in Section 3.2, the most
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common and convenient representation of functions is that of polymorphic direct

functoids.

Monomorphic direct functoids can be explicitly converted to indirect functoids,

using the operation makeFunN (provided by FC++). For instance, consider direct

functoids TwoTimes and Inc from Section 3.1 (the de�nition of Inc was not shown).

The following example is illustrative:

Fun1<int,int> f = makeFun1( twoTimes );

f( 5 ); // returns 10

f = makeFun1( inc );

f( 5 ); // returns 6

In fact, the calls to makeFunN can be elided|we show them here to help explain the

transformation, however a carefully designed implicit conversion function template

in the FunN classes makes the library functoids \smart" enough to let the trans-

formation happen implicitly. Polymorphic direct functoids can also be assigned to

indirect functoids, by �rst selecting a monomorphic instance. This conversion was

illustrated back in Figure 1 in Section 2 as

Fun2<int,int,int> f = monomorphize1<int,int,int>( plus );

f = minus; // implicit conversion

Note that just like makeFunN, the call to monomorphize can be elided.

It should be noted here that our indirect functoids are very similar to the func-

toids presented in L�aufer's work (1995) and the functors presented in Chapter

5 of Alexandrescu's book (2001). Indeed, the only di�erence is in the wrapper

classes, FunN<A1,A2,...,AN,R>. Whereas we use a reference counting mechanism,

both L�aufer's and Alexandrescu's implementations allowed no aliasing: di�erent in-

stances of FunN<A1,A2...,AN,R>had to refer to di�erent instances of FunNImpl<A1,A2,...,AN,R>.

To maintain this property, objects had to be copied every time they were about to

be aliased. This copying results in an implementation that is signi�cantly slower

than ours|in a previous paper (McNamara and Smaragdakis, 2000a), we demon-

strated that our implementation was four to eight times faster than L�aufer's. (Our

new implementation, which uses intrusive reference counting for indirect functoids,

is even faster, as we shall see in Section 10.) Another di�erence from other imple-

mentations is that our indirect functoids will rarely be de�ned explicitly by clients of

FC++. Instead, they will commonly only be produced by �xing the type signature

of a direct functoid.

5 Use of Direct Functoids

In this section we will demonstrate the use of FC++ direct functoids and try to show

how much they simplify programming with polymorphic functions. The comparison

will be to the two alternatives: templatized indirect functoids, and C++ function

templates.

Consider a polymorphic function twoTimes that returns twice the value of its

numeric argument. Its type signature would be
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// N: Number type

template <class N>

struct TwoTimes : public FunImpl<N, N> {

N operator()( const N& n ) const

{ return 2*n; }

};

// E: element type in original list

// R: element type in returned list

template <class E, class R>

struct Map : public

FunImpl<Fun1<E,R>, List<E>, List<R> > {

List<R>

operator()( const Fun1<E,R>& f, const List<E>& l ) const {...}

};

Fig. 2. Polymorphic functions as templates over indirect functoids

a -> a.

(In Haskell one would say

Num a => a -> a.

It is possible to specify this type bound in C++, albeit in a roundabout way|see

the short discussion on type constraints in Section 8 for details.)

Consider also the familiar higher-order polymorphic function map, which applies

its �rst argument (a unary function) to each element of its second argument (a

list) and returns a new list of the results. One can specify both twoTimes and

map as collections of indirect functoids. Doing so generically would mean de�ning

a C++ template over indirect functoids. This is equivalent to the standard way of

imitating polymorphism in L�aufer's framework. Figure 2 shows the implementations

of map and twoTimes using indirect functoids. (For brevity, the implementation of

operator() in Map is omitted. The implementation is similar in all the alternatives

we will examine.)

Alternatively, one can specify both twoTimes and map using direct functoids

(Figure 3). Direct functoids can be converted to indirect functoids for a �xed type

signature, hence there is no loss of expressiveness.

The direct functoid implementation is only a little more complex than the indi-

rect functoid implementation. The complexity is due to the de�nition of Sig. Sig

encodes the type signature of the direct functoid in a form that can be utilized

by all other higher order functions in our framework. According to the convention

of our framework, Sig has to be a class template over the types of the arguments

of Map. Recall also that FunType is just a simple template for creating function

signatures.

To express the (polymorphic) type signature of Map, we need to recover types

from the Sig structures of its function argument and its list argument. The type

computation F::Sig<L::EleType>::ResultTypemeans \result type of function F,

when its argument type is the element type of list L".
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struct TwoTimes {

template <class N> struct Sig : public Fun1Type<N,N> {};

template <class N>

N operator()( const N& n ) const { return 2*n; }

} twoTimes;

// F: function type

// L: list type

struct Map {

template <class F, class L>

struct Sig : public Fun2Type<F,L,List<F::Sig<L::EleType>::ResultType> >{};

template <class F, class L>

typename Sig<F,L>::ResultType

operator()( const F& f, const L& l ) const {...}

} map;

Fig. 3. Polymorphic functions as direct functoids

In essence, using Sig we export type information from a functoid so that it can

be used by other functoids. Recall that the Sig members are really compile-time

functions: they are used as type computers by the FC++ type system. The com-

putation performed at compile time using all the Sig members of direct functoids

is essentially the same type computation that a conventional type inference mech-

anism in a functional language would perform. Of course, there is potential for an

incorrect signature speci�cation of a polymorphic function but the same is true in

the indirect functoid solution.

To see why the direct functoid speci�cation is bene�cial, consider the uses of map

and twoTimes. In Haskell, we can say

map twoTimes [1..]

to produce a list of even numbers. With direct functoids (Figure 3) we can similarly

say

map( twoTimes, enumFrom(1) ).

This succinctness is a direct consequence of using C++ type inference. With the

indirect functoid solution (Figure 2) the code would be much more complex, because

all intermediate values would need to be explicitly typed as in

Map<int,int>()( Fun1<int,int>( new TwoTimes<int> ), enumFrom(1) ).

Clearly this alternative would have made every expression terribly burdensome,

introducing much redundancy (int appears 5 times in the previous example, when it

could be inferred everywhere from the value 1). Note that this expression has a single

function application. Using more complex expressions or higher-order functions

makes matters even worse. For instance, using the compose functoid mentioned in

Section 3.2, we can create a list of multiples of four by writing

map( compose( twoTimes, twoTimes ), enumFrom(1) ).
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The same using indirect functoids would be written as

Fun1<int,int> twoTimes( new TwoTimes<int> );

Map<int,int>()( Compose<int,int,int>()(twoTimes, twoTimes),

enumFrom(1) ).

We have found even the simplest realistic examples to be very tedious to encode us-

ing templates over indirect functoids (or, equivalently, L�aufer's framework (1995)).

In short, direct functoids allow us to simplify the use of polymorphic functions

substantially, with only little extra complexity in the functoid de�nition. The idiom

of using template member functions coordinated with the nested template class Sig

to maintain our own type system is the linchpin in our framework for supporting

higher-order parametrically polymorphic functions.

Finally, note that twoTimes could have been implemented as a C++ function

template:

template <class N>

N twoTimes( const N& n ) { return 2*n; }

This is the most widespread C++ idiom for approximating polymorphic functions

(e.g. (Meijer and Kettner, 2000; Stepanov and Lee, 1995)). C++ type inference

is still used in this case. Unfortunately, as noted earlier, C++ function templates

cannot be passed as arguments to other functions (or function templates). That is,

function templates can be used to express polymorphic functions but these cannot

take other function templates as arguments. Thus, this idiom is not expressive

enough. For instance, our example where twoTimes is passed as an argument to

map is not realizable if twoTimes is implemented as a function template.

The closest approximation of such functionality before FC++ was with the use of

a hybrid of class templates (Stepanov and Lee, 1995), like in Figure 2, and function

templates. In the hybrid case, each function has two representations: one using a

template class (so that the function can be passed to other functions) and one using

a function template (so that C++ type inference can be used when arguments are

passed to the function). The C++ Standard Library (Stepanov and Lee, 1995) uses

this hybrid approach for some polymorphic, higher-order functions. This alternative

is quite inconvenient because class templates still need to be turned into monomor-

phic function instances explicitly (e.g. one would write TwoTimes<int> instead of

twoTimes in the examples above), and because two separate representations need

to be maintained for each function. The user will have to remember which repre-

sentation to use when the function is called and which to use when the function is

passed as an argument.

What all of the above alternatives to direct functoids lack is the ability to express

polymorphic functions that can accept other polymorphic functions as arguments.

As an example, consider a function foo(f,x,y) whose body is just

return makePair( f(x), f(y) );

(makePair is the function to create a 2-tuple of values). With twoTimes de�ned as

a polymorphic direct functoid, we can write the expression
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foo( twoTimes, 2, 3.1 )

which will resolve to a value of type pair<int,double>. This is rank-2 polymor-

phism (Kfoury and Tiuryn, 1992); inside the call to foo(), f is used polymorphi-

cally. Neither of the other approaches enable functions like foo() to be de�ned.

That is, this higher-rank polymorphism capability of FC++ direct functoids is

unique among C++ libraries for functional programming.

6 Other Features

In this section we describe two other features of the FC++ library: currying and

subtype polymorphism.

6.1 Currying

FC++ supports currying of functoid arguments. Currying is implemented in the

CurryableN combinators. The fact that these are combinators make it easy to

transform any functoid into a curryable version of that functoid. Indeed, all of the

functoids exported by the library are curryable.3 Here is an example:

struct Plus { ... } xplus;

Curryable2<Plus> plus(xplus);

...

xplus(2,3); // xplus requires both args,

plus(2,3); // whereas plus is curryable

plus(2); // and can be called in any

plus(2,_); // of these ways.

plus(_,3);

In the example, xplus is de�ned as a normal direct functoid, and plus is an object

that adds the currying functionality to the underlying functoid. The underscore ( )

is a special value (the unique instance of a type named AutoCurryType) that cur-

ryable functoids know about which serves as a placeholder meaning \this argument

will be supplied later".

The CurryableN classes, which implement the currying functionality, take ad-

vantage of two C++ language features: overloading and partial specialization. In

C++, functions can be overloaded (ad hoc) based on the number and types of

their arguments. Similarly, templates can be specialized (ad hoc) for certain argu-

ment types. So class Curryable2 has four separate Sig specializations (Sig<X,Y>,

Sig<X>, Sig<X,AutoCurryType>, Sig<AutoCurryType,Y>|where X and Y are tem-

plate parameters (free type variables)) and four separate overloaded operator()

3 While all our functoids are curryable, currying only happens when a subset of a function's
arguments are passed. When all of the expected arguments are passed to a curryable functoid,
the Curryable wrapper class transparently \forwards" the call to its underlying functoid. An
optimizing C++ compiler can eliminate the overhead of the forwarding function, so there is no
penalty to adding the currying capability to every functoid.
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implementations, which correspond to the four di�erent ways a two-argument func-

toid may be called:

f(x,y)

f(x)

f(x,_)

f(_,y)

The CurryableN classes enable functions to be curried either implicitly (by only

supplying some of the leading arguments) or semi-explicitly (using underscores

as placeholders for arguments to be curried). The FC++ library also contains

fully explicit functions for currying, named bindMofN. For example plus(_,3) and

bind2of2(plus,3) are equivalent: both bind the second argument (of plus's two

arguments) to the value 3, and return a new function of one argument. The explicit

binders have an additional capability: if one binds all of a function's arguments, a

zero-argument functoid (a thunk) is returned. For example, bind1and2of2(plus,2,3)

returns a zero-argument functoid, which yields the value 5 when called. The curryN

functions can also be used to enact the same behavior: curry2(plus,2,3) yields

the same result as bind1and2of2(plus,2,3).

There are typically a few di�erent ways to express the same \curried func-

tion call" expression in FC++. The redundancy is a historical accident; the ex-

plicit binders (bindMofN) were created �rst, whereas the curryN functions and

CurryableN classes came later (after we discovered the template specialization

tricks needed to enable such functionality). Nowadays, we typically prefer to use the

implicit currying of the Curryables to curry any subset of a function's arguments,

and use the curryN functions when we want to bind all of the arguments and create

a thunk. The explicit binders are retained for compatibility with legacy code, and

because they are conceptually easier for novice users to understand.

Currying is a useful feature in functional programming, as it enables programmers

to easily specialize and adapt general functions to �t speci�c needs, by �xing some

subset of the functions' arguments. Whereas some functional languages have built-

in support for currying, in C++, it must be supplied via a library. FC++ is the only

C++ library which supports implicit currying, by exploiting the existing features

of the C++ language to make it appear to clients as though currying is a built-in

language feature that works automatically. Other C++ libraries have other levels of

support for currying. For example, the Lambda Library (J�arvi and Powell, 2002) has

a mechanism similar to FC++ semi-implicit currying, where explicit placeholders

can be used for curried arguments. Both the STL (Stepanov and Lee, 1995) and

Alexandrescu's \functors" (2001) do support \binding" one of the arguments of a

function to a speci�c value, however in each of these libraries, the binding must be

done explicitly (with a call to a binding function like FC++'s bindMofN), and the

binding only works on monomorphic functions|a severe limitation.
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6.2 Subtype Polymorphism

Another innovation of our framework is that it implements a policy of subtype

polymorphism for indirect functoids. Our policy is contravariant with respect to

argument types and covariant with respect to result types. Subtype polymorphism

is important because it is a familiar concept in object orientation|it ensures that

indirect functoids can be used like any other C++ object reference in real C++

programs.

A contrived example: Suppose we have two type hierarchies, where Dog is a

subtype of Animal and Car is a subtype of Vehicle. This means that a Dog is

an Animal (i.e., a reference to Dog can be used where a reference to Animal is

expected) and a Car is a Vehicle. If we de�ne a functoid which takes an Animal as

a parameter and returns a Car, then this functoid is a subtype of one that takes a

Dog and returns a Vehicle. For instance:

Fun1<Ref<Animal>, Ref<Car> > fa;

Fun1<Ref<Dog>, Ref<Vehicle> > fb = fa; //ok: fa is a subtype of fb

(Note the use of our Ref class template which implements references|a general-

purpose replacement of C++ pointers. The example would work identically with

native C++ pointers|e.g. Car* rather than Ref<Car>.)

That is, fa is a subtype of fb since the argument of fb is a subtype of the

argument of fa (contravariance) and the return type of fa is a subtype of the return

type of fb (covariance). We cannot go the other way, though (assign fb to fa).

This means that we can substitute a \speci�c" functoid in the place of a \general"

functoid. Since subtyping only matters for variables ranging over functions, it is

implemented only for indirect functoids.

Subtype polymorphism is implemented by de�ning an implicit conversion opera-

tor between functoids that satisfy our subtyping policy. This a�ects the implemen-

tation of class templates FunN of Section 4. For instance, the de�nition of Fun1 has

the form:

template <class Arg1, class Result>

class Fun1 : public CFunType<Arg1,Result> {

... // private members same as before

public:

... // same as before

template <class A1s,class Rs>

Fun1(const Fun1<A1s,Rs>& f) : ref(convert1<Arg1,Result>(f.ref)){}

};

Without getting into all the details of the implementation, the key idea is to de�ne

a template implicit conversion operator from Fun1<A1s,Rs> to Fun1<Arg1,Result>,

if and only if A1s is a supertype of Arg1 and Rs is a subtype of Result. The latter

check is the responsibility of direct functoid convert1 (not shown). In particular,

convert1 de�nes code that will explicitly test (at compile time) to ensure that an

Arg1 is a subtype of A1s and that Rs is a subtype of Result. In this way, the implicit



18 Brian McNamara and Yannis Smaragdakis

conversion of functoids will fail if and only if either of the above two conversions

fails. Since the operator is templatized, it can be used for any types A1s and Rs.

We should note that, although the above technique is correct and suÆcient for the

majority of conversions, there are some slight problems. First, C++ has inherited

from C some unsafe conversions between native types (e.g. implicit conversions

from 
oating point numbers to integers or characters are legal). There is no good

way to address this problem (which was inherited from C despite the intentions

of the C++ language designer; see (Stroustrup, 1996) p. 710). Second, we cannot

overload (or otherwise extend) the C++ operator dynamic_cast. Instead, we have

provided our own operation that imitates dynamic_cast for indirect functoids. The

incompatibility is unfortunate, but should hardly matter for actual use: not only

do we provide an alternative, but also down-casting functoid references does not

seem to be meaningful, except in truly contrived examples. More details on our

implementation of subtype polymorphism can be found in the documentation of

FC++ (Smaragdakis and McNamara, 2002).

7 Embedding interface

In this section we discuss how FC++ interfaces with the rest of the C++ language

and with C++ libraries, as well as how FC++ can capture \e�ects".

FC++ has interfaces to normal C++ functions and the C++ Standard Library.

We have already encountered ptr_to_fun(), which converts a normal function

into an FC++ functoid. The ptr_to_fun() operator works on member functions

as well, creating a functoid which takes a pointer to the receiver object as an extra

�rst parameter. Figure 4 shows ptr_to_fun() applied to both normal and member

functions, and demonstrates that the results are functoids by using the currying

ability of FC++ functoids. Note also that ptr_to_fun() may be applied to both

const and non-const member functions. Creating a functoid from a non-const

member function results in a functoid which can have an e�ect. This is possible

since the functoid takes a pointer to the receiver object. Indeed, this is the usual

way to capture e�ects inside functoids: whereas the parameters and results of the

functoids are const as a result of the FC++ library's design, there is nothing to

stop a client from passing a (const) pointer to a non-const object into a functoid,

which may then manipulate the object via the pointer.

FC++ functoids are designed to work smoothly with the C++ Standard Tem-

plate Library (STL). Monomorphic FC++ functoids conform to the requirements

for what the STL calls \adaptable functions", which enables FC++ functoids to be

passed to STL algorithms like std::transform() (the imperative analog of map()).

(Polymorphic functoids can be suitably adapted simply by �rst monomorphize()ing

them.) Indeed, when using STL algorithms, it is often easier to use FC++ functoids

rather than use the STL's own support. For example, to add 3 to each element of

a std::vector<int> named v, one must write

std::transform(v.begin(),v.end(),v.begin(),

std::bind1st(std::plus<int>(),3) );
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int f( int x, int y ) { return 3*x + y; }

class Foo {

int m_n;

public:

Foo( int nn ) : m_n(nn) {}

int bar( int x, int y ) const { return m_n*x + y; }

int n() const { return m_n; }

void inc_n( int x ) { m_n += x; }

};

void example() {

assert( ptr_to_fun(&f)(3)(1) == 10 );

Foo foo(3);

assert( ptr_to_fun(&Foo::bar)(&foo,3)(1) == 10 );

ptr_to_fun(&Foo::inc_n)(&foo,1); // effect

assert( foo.n() == 4 ); // updated value

}

Fig. 4. FC++ and native C++ functions

List<int> l = take( 5, enumFrom(1) );

// Make a vector from a List

std::vector<int> v( l.begin(), l.end() );

std::reverse( v.begin(), v.end() );

// Make a List from a vector

List<int> r( v.begin(), v.end() );

assert( r == list_with(5,4,3,2,1) );

Fig. 5. FC++ and STL

using STL, whereas when FC++ is brought to bear, just

std::transform(v.begin(),v.end(),v.begin(), fcpp::plus(3) );

is suÆcient. (Note the explicit namespace quali�cation of identi�ers|FC++ de�nes

namespace fcpp for its symbols.) On the other side of the coin, FC++ provides

combinators to promote STL \adaptable functions" into (monomorphic) FC++

functoids so that functions from STL can be used inside FC++. Finally, FC++

Lists are designed to �t into the STL framework for data structures. Figure 5 shows

that the List class supports iterators of the STL style. This makes converting both

to and from STL data structures easy, and enables Lists to be passed to (non-

mutating) STL algorithms.

Another interface that is somewhat common in legacy C/C++ code is the use of

types like void (*)(void*)4 as a sort of generic interface for \callback functions".

It is not possible to automatically convert an FC++ functoid into such a function

4 That is, a pointer to a function which takes as an argument a pointer to an arbitrary data
structure.
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pointer, but it is straightforward to hand-code an adapter function: just write a

normal C++ function with the proper signature that forwards the call to the ap-

propriate functoid. In this way, functoids can be used with such legacy libraries.

(On the other hand, if callbacks are desired but there is no need to interface with a

legacy callback library, then FC++ itself can serve as a complete callback library,

with indirect functoids serving as type-safe interfaces to arbitrary functions. See

reference (Smaragdakis and McNamara, to appear) as well as examples on our web

site (Smaragdakis and McNamara, 2002) for more about using FC++ as a callback

library.)

In summary, the interfaces between FC++ and STL and also between FC++ and

the object-oriented portions of C++ are smooth. FC++ makes it straightforward

to utilize the extra functional support on top of the existing imperative/object-

oriented programming platform that C++ provides (Smaragdakis and McNamara,

to appear).

8 Expressiveness

At this point we can summarize the level of support for functional programming

that FC++ o�ers, as well as its limitations.

� Complexity of type signature speci�cations: FC++ allows higher-order poly-

morphic function types to be expressed and used. Type signatures are ex-

plicitly declared in our framework, unlike in ML or Haskell, where types can

be inferred. Furthermore, our language for specifying type computations (i.e.,

our building blocks for Sig template classes) is a little awkward. We used our

framework to de�ne a large number (over 50) of common functional operators

and have not found our type language to be a problem|learning to use it

required only minimal e�ort.

The real advantage of FC++ is that, although function de�nitions need to

be explicitly typed, function uses do not (even for polymorphic functions).

In short, with our framework, C++ has as good support for higher-order and

polymorphic functions as it does for any other �rst-class C++ type.

� Polymorphic variables: While FC++ has a great deal of support for polymor-

phic functions, we still cannot create run-time variables with polymorphic

types, because these types cannot be expressed directly in C++. For exam-

ple, even though tail and init (the dual of tail, which discards the last

element of a list) both have the signature

[a] -> [a]

we cannot create a variable \f" which can be bound to both functions during

the course of its lifetime

f = tail;

...

f = init;
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because we have no C++ type to declare \f" to be an instance of. Similarly, we

cannot create a List which contains both tail and init, as these two objects

have di�erent C++ types (namely Tail and Init) and therefore cannot be

put into the same (homogeneously-typed) list. This limitation is fundamental,

common to all approaches to functional programming in C++.

� Limitations in the number of functoid arguments: There is a bound in the

number of arguments that our functoids can support. This bound can be

made arbitrarily high (templates with more parameters can be added to the

framework) but it will always be �nite. This has not proven to be a signi�cant

problem in practice.

A closely related issue is that of naming. We saw base classes like Fun1 and

Fun1Impl in FC++, as well as operators like makeFun1 and monomorphize1.

These entities encode in their names the number of arguments of the functions

they manipulate. Using C++ template specialization, this can be avoided, at

least in the case of class templates. Thus, we can have templates Fun and

FunImpl with a variable number of arguments. If template Fun is used with

two arguments, then it is assumed to refer to a one-argument function (the

second template argument is the return type). We experimented with this

idea, and elected to use it only in the CFunType and FunType classes (which

help implement Sig type signatures in class de�nitions). In client code, where

indirect functoid variables are declared and used, the redundant N in the FunN

names seems valuable to the human reader.

� Automatic currying: all of the library functoids support automatic currying

via the CurryableN combinators. This enables a functoid to be called with

fewer arguments than it expects, resulting in a new functoid which expects

the remainder of the arguments. It is also possible to enable functoids to ac-

cept more arguments than they expect. For example, imagine a one-argument

function named foo which returns another one-argument function. We could

imagine writing foo(x,y) to mean the same thing as foo(x)(y). FC++ only

supports the latter form; while it is possible to support the former as well, we

have rarely come across cases where this form of \uncurrying" is desirable.

� Compiler error messages: C++ compilers are notoriously verbose when it

comes to errors in template code. Indeed, our experience is that when a user

of FC++ makes a type error, the compiler typically reports the full template

instantiation stack, resulting in many lines of error messages. In some cases

this information is useful, but in others it is not. We can distinguish two kinds

of type errors: errors in the Sig de�nition of a new functoid and errors in the

use of functoids. Both kinds of errors are usually diagnosed well and reported

as \wrong number of parameters", \type mismatch in the set of parameters",

etc. In the case of Sig errors, however, inspection of the template instantiation

stack is necessary to pinpoint the location of the problem. Fortunately, the

casual user of the library is likely to only encounter errors in the use of

functoids.

Reporting of type errors is further hindered by non-local instantiations of

FC++ functoids. Polymorphic functoids can be passed around in contexts
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that do not make sense, but the error will not be discovered until their subse-

quent invocation. In that case, it is not immediately clear whether the prob-

lem is in the �nal invocation site or the point where the polymorphic functoid

was passed as a parameter. Fundamentally, this problem cannot be addressed

without type constraints in template instantiations, something that C++ does

not o�er5. Overall, however, type error reporting in FC++ is adequate, and,

with some experience, users have little diÆculty with it.

� Creating closures: Our functoid objects correspond to the functional notion

of closures: they can encapsulate state together with an operation on that

state. Note, however, that, unlike in functional languages, \closing" the state

is not automatic in our framework. Instead, the state values have to be ex-

plicitly passed during construction of the functoid object. Of course, this is a

limitation in every approach to functional programming in C++.

The reader may have noticed our claim in Section 4 that our (internal)

reference-counted functoid pointers cannot form cycles. This implies that our

closures (i.e., functoid objects) cannot be self-referential. Indeed, this is a

limitation in FC++, albeit not an important one: since our closures cannot

be anonymous, and since the \closing" of state is explicit, it is convenient

to replace self-referential closures with closures that simply create a copy of

themselves. This approach is slightly ineÆcient, but the eÆciency gains of

using a fast reference counting technique for functoid objects far outweigh

this small cost. (In fact, as we shall see in Section 10.4, we can even eliminate

the need to make copies by using Reusers, thereby also eliminating this �nal

small cost.)

� Pure functional code vs. code with side-e�ects: In C++, any method is allowed

to make system calls (e.g. to perform I/O, access a random number generator,

etc.) or to change the state of global variables. Thus, there is no way to fully

prevent side-e�ects in user code. Nevertheless, by declaring a method to be

const, we can prevent it from modifying the state of the enclosing object (this

property is enforced by the compiler). This is the kind of \side-e�ect freedom"

that we try to enforce in FC++. Our indirect functoids (as shown in Section 4)

are explicitly side-e�ect free|any class inheriting from our FunNImpl classes

has to have a const operator(). Nevertheless, users of the library could

decide to add other methods with side-e�ects to a subclass of FunNImpl. We

strongly discourage this practice but cannot prevent it. It is a good convention

to always declare methods of indirect functoids to be const.

For direct functoids, guarantees are even weaker. We cannot even ensure that

operator() will be const, although this is, again, a good practice. While

functoids with side e�ects can be implemented in our framework (as described

in Section 7), such functoids should be used with care. Other opportunities

5 Such type constraints are known in the C++ community as \concept checks". There are some
C++ \concept checking libraries" (McNamara and Smaragdakis, 2000b; Siek and Lumsdaine,
2000) which cleverly exploit the language to check some of the constraints and coerce the
compiler into emitting more readable diagnostic messages. We have not so far applied these
techniques to the particular constraints which would bene�t FC++ functoids, though.
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for code with side e�ects abound in C++. Our recommendation is that most

code with side e�ects should be implemented outside the FC++ framework.

For instance, such code could be expressed through native C++ functions.

The purist can even de�ne monads (Wadler, 1990) using FC++; we have

implemented a few example monads, which are available (along with dozens

of other example �les) on the FC++ web site (Smaragdakis and McNamara,

2002).

9 Performance

FC++ is quite eÆcient in its implementation of functional concepts. For common

programming tasks that use the FC++ conventions, the overhead is either zero

or negligible (i.e., just a dynamic dispatch indirection for indirect functoids). The

only case where performance is a legitimate concern is if one attempts to copy func-

tional idioms directly to C++ using FC++. FC++ is not an optimizing compiler

for a functional language, so it misses several common optimizations; for exam-

ple, tail-recursion elimination is not automatically performed. Furthermore, FC++

does not even have a binary (platform-speci�c) runtime system|FC++ is entirely

a language-level library, thus gaining in simplicity and portability: FC++ is as

portable as standard C++. As a result, FC++ has no special runtime support for

specialized functions or lazy evaluation. Similarly, FC++ o�ers a language-level

reference counting mechanism (used internally for indirect functoids and lazy lists),

which is not directly comparable to an optimized garbage collector. Nevertheless,

the implementation of FC++ carefully tries to avoid unnecessary overhead and a

number of optimizations are employed. In the following section (Section 10), we

will describe the optimizations in detail.

In this section we show some simple performance measurements comparing FC++

to Hugs (a well-known Haskell interpreter (Jones and Reid, 2002)) and ghc (an op-

timizing Haskell compiler (Peyton-Jones, Marlow, and Seward, 2002)). The bench-

marks are programs that C++ programmers are unlikely to write in this form, but

they show common functional programming idioms, involving heavy use of lazy

(in�nite) lists. Therefore, these benchmarks serve as stress tests of FC++'s lazy

lists.

For each benchmark, we wrote two programs: one in Haskell, and one in C++

using the FC++ library. The programs are faithful translations of each other, in

that they each represent the same solution to the given problem. The programs were

run on a Sun Sparc Ultra-30 with 128M of RAM. We used g++2.95.2, ghc5.00.1,

and the February 2001 version of Hugs. In the case of both g++ and ghc, we used

-O2 and static linking.

The next three subsections illustrate our benchmark programs and the perfor-

mance results. The �nal subsection in this section notes the many caveats of a

cross-language performance comparison, and draws only a very basic conclusion

from our data.
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module Main where

divisible t n = t `rem` n == 0

factors x = filter (divisible x) [1..x]

prime x = factors x == [1,x]

primes n = take n (filter prime [1..])

l = primes 600

main =do print (l !! 599)

Fig. 6. Primes in Haskell

9.1 Primes

Primes is a simple program that computes a (lazy) list of the �rst N prime numbers

and then prints the N th prime. It does so simply by �ltering all the primes from

the (in�nite) list of integers, and then taking the �rst N of them. Figure 6 shows

the code for primes in Haskell. Figure 7 shows the code for primes in FC++. Note

that this is the �rst complete C++ program presented in this paper. It includes

a main routine, as well as all the necessary #include and namespace statements.

Also, throughout this section we use the datatype OddList for FC++ lazy lists for

performance reasons. We explain the slight di�erence between FC++ Lists and

OddLists in Section 11.

Table 1 shows the performance results for primes for various values of N. FC++

is about 55 times as fast as Hugs for this program, and also consistently faster than

ghc. While Haskell uses the arbitrary precision type Integer by default, explicitly

requesting 32-bit Ints had no measurable e�ect on the ghc-compiled program's

performance. On the other hand, using Ints did speed up the Hugs times by about

15% for each run (the numbers in the table for Hugs are without the speedup).

9.2 Tree

Tree is a program that generates a random binary search tree of integers and then

(lazily) computes the \fringe" of the tree. The fringe of a tree is a list of all of the

leaves of the tree, in the order they are encountered during an inorder traversal.

The main program prints all of the nodes in the fringe that match an arbitrary

value (13 in the listings); this is merely a convenient way to force the evaluation of

the lazy list.

Figure 8 shows the Haskell code for Tree; Figure 9 shows Tree in FC++. For both

the Haskell and C++ programs, the code that actually builds the random binary

trees is elided from the listings.

Table 2 shows the performance results for Tree. N is the number of nodes in the

tree. No results are reported for Hugs for more than 30,000 nodes because the system

memory was exhausted. For this benchmark, FC++ is consistently faster than
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#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Divisible : public CFunType<int,int,bool> {

bool operator()( int x, int y ) const { return x%y==0; }

} divisible;

struct Factors : public CFunType<int,OddList<int> > {

OddList<int> operator()( int x ) const {

return filter( curry2(divisible,x), enumFromTo(1,x) );

}

} factors;

struct Prime : public CFunType<int,bool> {

bool operator()( int x ) const {

return factors(x) == cons( 1, cons( x, NIL ) );

}

} prime;

struct Primes : public CFunType<int,OddList<int> > {

OddList<int> operator()( int n ) const {

return take(n, filter( prime, enumFrom(1) ) );

}

} primes;

int main() {

OddList<int> l = primes(NUM);

cout << at( l, NUM-1 ) << endl;

}

Fig. 7. Primes in FC++

N FC++ ghc Hugs

200 0.26 0.27 13

400 1.17 1.21 60

600 2.64 3.46 146

800 4.89 5.37 271

1000 7.77 8.56 424

Table 1. Primes (all times in seconds)
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module Main where

data Tree a = Node !a !(Tree a) !(Tree a)

| Nil

leaf (Node _ Nil Nil) = True

leaf (Node _ _ _) = False

fringe Nil = []

fringe n@(Node d l r)

| leaf n = [d]

| otherwise = fringe l ++ fringe r

main =do --// code to make a random tree "t"

print (filter (== 13) (fringe t))

Fig. 8. Tree in Haskell

N FC++ ghc Hugs

10000 0.08 0.03 0.24

20000 0.19 0.06 0.56

30000 0.29 0.10 0.89

40000 0.41 0.12 -

80000 0.87 0.26 -

160000 1.69 0.56 -

Table 2. Tree (all times in seconds)

Hugs, but about three times slower than ghc. Investigating the disparity between

the FC++ and ghc performance, we found that ghc performs lazy list concatenation

much faster than FC++ does. We plan to search further for a generally applicable

optimization that will speed up list concatenation. Note that for Tree, using Ints

instead of Integers had no measurable e�ect on the times for either ghc or Hugs.

9.3 Hamming

The �nal program computes Hamming numbers. Hamming numbers are all the

integers which are products of powers of 2, 3, and 5. An elegant way to compute

the (in�nite) list of all Hamming numbers is to say that the �rst number in the

list is 1, and that the rest of the list is computed by merging three other lists:

twice, three times, and �ve times the list of Hamming numbers itself. The solution
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#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Tree {

int data;

Tree *left;

Tree *right;

Tree( int x ) : data(x), left(0), right(0) {}

Tree( int x, Tree* l, Tree* r ) : data(x), left(l), right(r) {}

bool leaf() const { return (left==0) && (right==0); }

};

struct Fringe : public CFunType<Tree*,OddList<int> > {

OddList<int> operator()( Tree* t ) const {

if( t==0 )

return NIL;

else if( t->leaf() )

return cons(t->data,NIL);

else

return cat( Fringe()(t->left), curry(Fringe(),t->right) );

}

} fringe;

int main() {

// code to build tree "t"

List<int> l = fringe(t);

l = filter( fcpp::equal(13), l );

while( !null(l) ) {

cout << head(l) << endl;

l = tail(l);

}

}

Fig. 9. Tree in FC++

is very easy to express recursively in Haskell; it is given in Figure 10. Notice how

the de�nition of hamming refers to hamming itself. To construct the same solution

in C++, we need to be a little more verbose, but the structure is exactly the same.

The FC++ code is shown in Figure 11.

Table 3 shows the relative performance of the programs to print the N th Ham-

ming number. Again, FC++ outperforms Hugs, this time by a factor of about 10;

the times for FC++ and ghc are nearly equal. For this program, we could not use

the 32-bit Int in place of Integer, as Int is not wide enough|our C++ Hamming

code needs the g++-speci�c long long int (64 bits) to handle the large numbers

involved in this example.
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module Main where

merge a@(x:xs) b@(y:ys) =

if x < y then x : (merge xs b)

else if x > y then y : (merge a ys)

else x : (merge xs ys)

hamming =

1 : (merge (merge (map (*2) hamming)

(map (*3) hamming))

(map (*5) hamming) )

main =do putStr "Hamming number: "

print 2000

putStr "is "

print (hamming !! 2000)

Fig. 10. Hamming in Haskell

N FC++ ghc Hugs

1000 0.02 0.01 0.17

1500 0.03 0.02 0.24

2000 0.03 0.02 0.34

4000 0.07 0.05 0.68

8000 0.14 0.13 1.42

12000 0.21 0.19 2.21

Table 3. Hamming (all times in seconds)

9.4 Disclaimers and Conclusions

In this section, we have compared the performance of C++ programs with Haskell

programs. It is important to note that no direct comparison can really be made.

All cross-language experiments are fraught with factors that make a direct apples-

to-apples comparison impossible, and our experiments are no di�erent. There are

many confounding factors, a few of which were mentioned at the beginning of this

section. Here we list a handful of obvious di�erences between FC++ and Haskell

which we have not attempted to account for.

� Strictness. Haskell is lazy (non-strict) throughout, whereas C++ is strict ex-

cept in FC++ lazy lists, which are explicitly coded to be lazy.
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#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Merge {

template <class L, class M>

struct Sig : public FunType<L,M,OddList<typename L::ElementType> > {};

template <class T>

OddList<T> operator()( const List<T>& a, const List<T>& b ) const {

T x = head(a);

T y = head(b);

if( x < y )

return cons( x, curry2( Merge(), tail(a), b ) );

else if( x > y )

return cons( y, curry2( Merge(), a, tail(b) ) );

else

return cons( x, curry2( Merge(), tail(a), tail(b) ) );

}

} merge;

typedef long long int FOO; // g++ has "long long"

struct Hamming : public CFunType< List<FOO> > {

List<FOO> operator () () const {

static List<FOO> h = Hamming();

static List<FOO> x = curry2( map, multiplies((FOO)2), h );

static List<FOO> y = curry2( map, multiplies((FOO)3), h );

static List<FOO> z = curry2( map, multiplies((FOO)5), h );

static List<FOO> m1= curry2( merge, x, y );

static List<FOO> m2= curry2( merge, m1, z );

return cons( (FOO)1, m2 );

}

} hamming;

int main() {

cout << "The " << NUM << "th hamming number is: ";

cout << at( hamming(), NUM ) << endl;

}

Fig. 11. Hamming in FC++

� Memory management. FC++ manages memory with reference-counted point-

ers and uses the default allocator provided by the C++ implementation.

Haskell uses garbage collection, and a sophisticated allocator designed for

optimal performance for a lazy functional language.6

6 For reference, we have also experimented with the Boehm-Demers-Weiser conservative garbage
collector for C/C++ (Boehm and Demers, 2002) but did not perform a comprehensive test with
memory-intensive programs where locality would matter. Hence, our experience mostly shows
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� Exception handling. Haskell has more exception-handling by default; for ex-

ample, taking the head() of an empty list raises an exception in Haskell,

whereas it simply leads to unde�ned behavior in FC++.

� Runtime. Haskell has a run-time system which supports a mix of compiled

and interpreted code and supports concurrent threads of execution. C++ has

no comparable run-time system.

� Optimizations. Many FC++ optimizations must be done \by hand"; the

Haskell compiler performs similar optimizations automatically.

By listing these confounding factors, it is not our intention to invalidate the

results of the experiments of this section. Rather, we simply wish to make explicit

the context in which the results must be interpreted. It is meaningless to make

general statements like \FC++ is faster than Haskell" or vice-versa. Our goal is

merely to demonstrate that, even for benchmarks which make heavy use of lists and

lazy evaluation, FC++ can perform roughly comparably to an optimized functional

implementation.

10 Performance Analysis

The current FC++ implementation is more than an order or magnitude faster than

the previous release of the library. In this section, we discuss six major optimizations

we have applied to our implementation, quantifying the individual bene�ts when-

ever possible. For each optimization, we picked an appropriate benchmark that

clearly demonstrates the di�erence in performance. (The di�erence for the other

programs is typically less dramatic.) At the end of the section, we also repeat an

experiment from an earlier paper (McNamara and Smaragdakis, 2000a), comparing

the performance of FC++ with L�aufer's library.

10.1 Caching

The �rst optimization is caching (memoization) in lazy lists. A lazy list is rep-

resented by an unevaluated function, or \thunk". When the value of the list is

requested (head(), tail(), or null() is called), the thunk is called in order to pro-

duce the value. Rather than re-call the thunk each time the list's value is needed,

the thunk should be called only once, and its value remembered. This optimization

is imperative for programs like Hamming; without caching, Hamming grows expo-

nentially (rather than linearly). In an older version of FC++ where caching was

not available to lists, Hamming(300) took over 30 seconds to compute!

Caching is implemented as a kind of variant record. Conceptually, a \memoized

thunk" or \cache" is

class Cache {

bool value_is_valid;

the constant overheads of the two methods: the conservative GC was more than twice as slow
as non-intrusive reference counting.
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Fun0<Value> function;

Value value;

public:

Value val() {

if( !value_is_valid )

{ value=function(); value_is_valid=true; }

return value;

}

};

In the actual implementation, we eliminate the space overhead of the boolean

variable by using a distinguished Value (named XBAD) to represent the !value_is_valid

state.

10.2 Structure of list implementation

When we reimplemented FC++ lazy lists to use caching, we experimented with

three di�erent structures for the underlying implementation of lazy lists. We ar-

bitrarily named the three versions TOP, MIDDLE, and BOTTOM (the names

re
ect the order that we wrote them on a white board). These structures are

represented both as skeleton C++ code and pictorially in Figure 12. (To sim-

plify the exposition, the code assumes that lists hold only ints (rather than being

template <class T>s), and also uses raw pointers rather than reference-counted

pointers.)

We tested all three list implementations on Primes(1000); the results are shown

in Table 4. It should be no surprise that MIDDLE was the winner; MIDDLE con-

tains fewer indirections than the other two solutions. TOP and BOTTOM are both

slower due to the extra indirection and poorer locality. Additionally, BOTTOM

(and MIDDLE too, actually) su�ers another hit because it needs a special value to

represent the empty list (called XNIL, which is like XBAD mentioned in Section 10.1),

and every evaluation of a list requires an extra test to determine which member of

the variant record is active.

The challenge is implementing MIDDLE for List<T>s where T has no default

constructor. C++ requires that constructors be called for all members of an ob-

ject, but in the case of MIDDLE, when the value in the Cache isn't valid, we

have no constructor to call. As a result, the �rst �eld of the pair is actually an

unsigned char array whose size and alignment are appropriate for Ts. Placement

new and explicit destructor invocations are used to explicitly manage the lifetime of

the T created in the raw storage when the Cache value becomes valid. It should be

noted that the C++ language standard provides no mechanism to ensure that the

unsigned char array is properly aligned to hold data of type T. Nevertheless, there

is a very portable \hack": creating a union of all kinds of C++ objects (primitive

data types, structures, pointers, pointers to functions, pointers to members, etc.)

ensures that the alignment of the union is wide enough to hold any kind of object

on almost any system. Life would be a lot simpler if C++ were extended to have
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   typedef pair<int,List>* Value;

TOP
class List {
   Cache* c;
};
class Cache {

   Fun0<Value> function;
   Value value;
};

class List {
   Cache* c;

class Cache {
   typedef pair<int*,List> Value;
   Fun0<Value> function;
   Value value;

BOTTOM

};

};

   typedef pair<int,List> Value;

MIDDLE
class List {
   Cache* c;
};
class Cache {

   Fun0<Value> function;
   Value value;
};

fxn fxn

TOP

BOTTOM

MIDDLE

fxn fxn

fxn fxn

1 2

1 2

1 2

Fig. 12. Three possible list implementations

Primes(1000) Time (s)

TOP 12.43

MIDDLE 7.77

BOTTOM 26.36

Table 4. Comparison of di�erent list structures

either a mechanism to specify alignments (a system-level solution) or a way to ex-

plicitly ask to have a particular structure member's constructor not called when the

structure is created (a language-level solution); in the meantime, the hack works

well enough on most systems. (A system for which the hack does not work can

always revert to an alternative implementation of lists, e.g. TOP.)

10.3 Intrusive reference counting

The FC++ library contains two reference-counted pointer classes: one that uses

an intrusive reference count, and one that is non-intrusive. The two schemes are
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 count

 object

obj data

ref ref count

 object

ref ref

 

Fig. 13. Non-intrusive reference counting (left) and intrusive reference counting (right)

Hamming(12000) (no functoid reuse) Time (s)

FC++, non-intrusive (-IRC -REUSE) 0.451

FC++, intrusive (+IRC -REUSE) 0.280

Table 5. The value of intrusive reference counting

depicted in Figure 13. The advantage of non-intrusive reference counts is that the

object being counted does not need to support any particular interface; it is igno-

rant of the reference counting. Intrusive reference counts, on the other hand, require

that the objects they count supply the counting mechanism. The bene�ts of intru-

sive reference counts are increased locality and fewer separate calls to new. (For a

more thorough introduction to the topic of intrusive reference counts, see reference

(Alexandrescu, 2001), Chapter 7.)

We tested Hamming both with and without intrusive reference counts. Since

the \reuse functoids" optimization (discussed in the following subsection) requires

intrusive reference counts, we turned o� that optimization for both of these runs, in

order to have a fair comparison. As seen in Table 5, the lack of intrusive reference

counts makes Hamming slow down by a factor of about 1.6.

10.4 Reusing functoids during recursive calls

The typical implementation of a functoid which operates on lazy lists contains a

curried recursive call as its last line. For example, consider the Take functoid shown

in Figure 14 (with Sigmember elided). (Recall that take selects the �rst N elements

of a list and discards the rest.) The call to curry2() that is passed to cons() in

the last line of the functoid creates a new object on the heap that represents the

recursive call (the \thunk" that makes functoids lazy). The only thing that di�ers

between the newly created functoid and the current functoid itself are the values

of l and n. Instead of discarding the called functoid and creating a similar new

functoid, we can recode take so that it reuses the functoid. Figure 15 shows the

code with this reuse (again, with Sig members elided).

We tested Primes both with and without \reuse" versions of filter(), take(),

at(), enumFrom(), and enumFromTo(). The results are shown in Table 6. Clearly,

reusing functoids is a big win. When there is no reuse, each call to take() has a
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struct Take {

template <class T>

OddList<T> operator()( size_t n, const List<T>& l ) const {

if( n==0 || null(l) )

return NIL;

else

return cons( head(l), curry2( Take(), n-1, tail(l) ) );

}

} take;

Fig. 14. take() without functoid reuse

struct TakeHelp : public Fun0Impl<OddList<T> > {

mutable size_t n;

mutable List<T> l;

TakeHelp( size_t nn, const List<T>& ll ) : n(nn), l(ll) {}

OddList<T> operator()() const {

if( n==0 || null(l) )

return NIL;

else {

T x = head(l);

l = tail(l);

--n;

return cons( x, Fun0<OddList<T> >(this) );

}

}

};

struct Take {

template <class T>

List<T> operator()( size_t n, const List<T>& l ) const {

return Fun0<OddList<T> >( new TakeHelp<T>(n,l) );

}

} take;

Fig. 15. take() with functoid reuse

struct Take {

template <class T>

OddList<T> operator()( size_t n, const List<T>& l,

Reuser2<Inv,Var,Var,Take,size_t,List<T> > r = REUSE_INIT ) const {

if( n==0 || null(l) )

return NIL;

else

return cons( head(l), r( Take(), n-1, tail(l) ) );

}

} take;

Fig. 16. take() with reuse via a Reuser
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Primes(1000) Time (s)

FC++, no functoid reuse (-REUSE) 26.36

FC++, reusing functoids (+REUSE) 7.77

Table 6. The value of reusing functoids

functoid destructed, deallocated, and has a new functoid allocated and constructed.

With reuse, there is only mutation; no heap allocation/deallocation occurs.

Comparing Figures 14 and 15, one can see that hand-coding a \reuse" version of

a functoid takes a bit more code than the non-reuse version. In order to simplify the

task of applying this valuable optimization, we have added Reusers to the library.

Reusers enable us to capture the essence of functoid reuse with signi�cantly less

coding e�ort. Figure 16 shows Take written with a Reuser. A ReuserN is similar

to a call to curryN(). The Reuser appears as an extra parameter to the functoid.

This parameter has a default value (thus making the interface change e�ectively

\invisible" to clients) which is used to create a new thunk on the heap. As a result,

the initial call to a functoid that employs a Reuser allocates space for a thunk.

Subsequent recursive calls are then channeled through the Reuser (rather than via

a call to curry()); the Reuser's heap thunk, when invoked, explicitly passes itself

along to the next call as the extra parameter. This enables reuse of the existing

heap thunk. Reusers take template parameters specifying the argument types of

the to-be-curried call, as well as extra template parameters that specify whether

those parameters are invariant (Inv) or variant (Var) between calls (knowing this

information prevents needless overwriting of duplicate values). Though the internal

mechanism is quite complicated, Reusers are relatively easy to apply (compare the

code in Figures 14 and 16), and perform nearly as well as the \hand-written" code

to perform the optimization (there is only a small \abstraction penalty").

10.5 Avoiding functions with static data

The Cache implementation (Figure 12, MIDDLE) uses two distinguished values

for its pointer �eld. The value XNIL represents an empty list, and the value XBAD

represents an \uncached" value (the function is valid, the value is not). These were

originally encoded as

template <class T> class Cache { ...

static Ref<Cache<T> >& XNIL() {

static Ref<Cache<T> > dummy( new Cache );

return dummy;

} // XBAD similarly

};
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Primes(1000) Time (s)

FC++, static data in functions (-GL) 11.63

FC++, global data (+GL) 7.77

Table 7. The value of using global data

However for many compilers (e.g. g++2.95.2, used in our tests), it is far better

to say

template <class T> class Cache { ...

static Ref<Cache<T> > XNIL;

};

Ref<Cache<T> > Cache<T>::XNIL( new Cache );

The reason is that in the former case, each time XNIL() is called, a boolean


ag (inserted by the compiler) must be checked to see if initialization of the static

variable has already occurred. In the latter case, initialization happens at the start

of the program, and XNIL is just a value. We tested both versions on Primes; the

results are shown in Table 7.

Using global data with static initializations that require constructors to be called

can be perilous; there are order-of-initialization and order-of-destruction issues for

global objects in C++ that are often hard to solve. Fortunately, all of these global

objects (which sometimes refer to one another) are de�ned in the same translation

unit. This greatly simpli�es the issue, and enables us to ensure the correct order

of initialization for these objects (section 3.6.2, paragraph 1 of the C++ standard

(ISO, 1998), prescribes the order of initialization for such objects). As for order-of-

destruction issues, we circumvent the potential problems by arti�cially incrementing

the reference counts of the global objects during initialization. Then, even when the

reference-counted pointers are destructed after the end of main(), the ref counts

do not go to zero, and so the objects to which they refer are left alive; they dangle

in the heap until the system collects them when the program exits.

Note also that having XNIL() return a reference in the former version is quite

important; return by value may degrade the performance even more severely. This

is because returning a Ref object by value may create (needless) work, incrementing

and decrementing the reference count as the temporary object lives its short life.

We should mention that one of the proposed changes (Core Language issue #270)

to the C++ language standard would invalidate the above optimization, by making

the order of initialization unde�ned even for static variables within the same compi-

lation unit. Nevertheless, newer compilers are more likely to optimize function-static

data well, removing the need for the optimization in the �rst place. (g++3.0, for

instance, appears to optimize function-static data references.) Thus, the measure-

ments of this section are likely to keep re
ecting future trends. The latest release of
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Primes(1000) Time (s)

FC++ with tail recursion (-TRO) 10.69

FC++ with iteration (+TRO) 7.77

Table 8. The value of transforming tail recursion into iteration

Primes(1000) Time (s)

FC++ (-IRC -REUSE -GL -TRO) 62.05

FC++ (+IRC +REUSE +GL +TRO) 7.77

Table 9. The value of four optimizations combined

FC++ has a compile-time 
ag that lets users use the library both with compilers

that conform to the current C++ semantics and with those that may implement

the revised semantics.

10.6 Using iteration instead of tail recursion

C++ compilers do not transform tail recursion into iteration|such an optimiza-

tion would be rarely safely applicable in C++ code. As a result, we have done the

transformation by hand in library functions like filter() and at(), and call this

the \tail recursion optimization". We ran Primes both with and without this opti-

mization; the results are shown in Table 8. Transforming tail recursion to iteration

has a signi�cant impact on the performance.

10.7 Summary of Optimizations

The results of these optimizations accumulate. We ran Primes both in its optimal

con�guration, and also with all four of the previous optimizations turned o� (intru-

sive reference counting (IRC), reusing functoids (REUSE), global data (GL), and

tail recursion optimization (TRO)). The results are shown in Table 9; note that

without any of these optimizations, Primes is eight times slower. Keep in mind also

that the unoptimized program still includes the best caching and list implementa-

tion; our original naive implementation was even slower.

10.8 A �nal comparison

In an earlier paper (McNamara and Smaragdakis, 2000a), we ran an experiment

comparing the performance of the FC++ library with L�aufer's functoid library.
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Tree(100000) Time (s)

FC++ (+IRC +REUSE +GL +TRO) 1.62

L�aufer's library 23.00

Table 10. Latest comparison with L�aufer's library

That experiment used a program similar to the \tree" program in Section 9.2. The

experiment showed that the (previous) FC++ implementation was 4 to 8 times as

fast as L�aufer's library, thanks to the reference-counting in our implementation.

We re-ran the experiment with the new FC++ implementation with all of the

optimizations enabled. The results are shown in Table 10; FC++ is now more than

14 times as fast for this benchmark.

11 Lazy Lists: Odd and Even

In this section we shall discuss FC++ lazy lists in more depth. We focus on the

unusual dual representation we have for lists|one that exploits C++ implicit con-

versions to allow lazy lists that are both eÆcient and easy to use.

As we saw in Section 2, FC++ lazy lists can be cons()ed up in the usual way:

List<int> l = cons( 1, cons( 2, NIL ) );

However, we could also create \in�nite" lists with functions like enumFrom(); for

example, enumFrom(1) returns the list of integers 1, 2, 3, .... The implementation

of enumFrom() reveals how this is done:

struct EnumFrom:public CFunType<int,List<int> > {

List<int> operator()( int x ) const {

return cons( x, curry1( EnumFrom(), x+1 ) );

}

} enumFrom;

Though short, the function body nevertheless requires explanation because of the

apparent inconsistency in the use of cons(): does cons() accept as its second

argument a list, or a thunk (like the above curry1 expression) returning a list?

The answer is that cons() is overloaded to accept either a list or a list thunk. As

described in Section 10.2, a List is represented as a kind of variant record, whose

tail portion may either be a reference to the rest of the list, or an unevaluated thunk

which will produce the remainder list on demand.

Wadler, Taha, and MacQueen (1998) point out that there are di�erent \degrees of

laziness". Depending upon implementation choices, we may consider a lazy stream

of values to be \even" or \odd", where even streams are completely lazy, whereas

odd streams sometimes exhibit a little too much eagerness. For example, in this
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code (adapted from the main running example in reference (Wadler, Taha, and

MacQueen, 1998)):

List<double> l = cons( 1.0, cons( 0.0, cons( -1.0, NIL )));

l = take( 2, map( sqrt, l ) );

we would expect l to have the �nal value [1.0,0.0]. However this will only work

for \even" lists; an \odd" list will evaluate one element too far, and end up trying to

compute sqrt(-1.0) and fail. The details of the di�erences between the even and

odd styles are explicated in reference (Wadler, Taha, and MacQueen, 1998). (As we

shall see, FC++ code does not fail in this example; our lists are not over-eager.)

FC++'s lazy lists are neither even nor odd. We have instead chosen a hybrid

approach that works well in C++. There are two kinds of lists exposed to users

in FC++: List and OddList. The former is \even", whereas the latter is \odd".

An important feature is that the two kinds of lists are implicitly convertible to one

another. That is, an odd list can be used where an even list is expected (it will be

automatically wrapped into a thunk) and an even list can be used where an odd

list is expected (it will be automatically unwrapped).

The two list types have exactly the same interface; the only di�erence between

the two is that OddLists are always eager in their �rst element, whereas Lists are

not. It is noteworthy that the eagerness of OddLists is e�ectively limited to the �rst

element; taking the tail() of an OddList returns an (even) List as a result. Most

functions other than tail() that produce list values (e.g. cons(), enumFrom(), and

map()) actually return OddLists, and not Lists.

This may seem an awkward state of a�airs, at �rst. However, this peculiar imple-

mentation o�ers an interesting bene�t: by exposing the fact that some list elements

are already evaluated (OddLists) to the type system, we can overload certain core

functions like head() to take advantage of this information|to take the head() of

a List, we must evaluate a thunk to produce a value (after checking to see if the

value has previously been cached, as discussed in Section 10.1), whereas to take the

head() of an OddList, we can simply access a stored value directly, which is much

more eÆcient. Hence the separation of lists into two data types can improve the

run-time performance of list code.

This performance bene�t comes with two potential costs. First, the overall com-

plexity of the FC++ library is increased by having two list types. Second, since

OddLists are not completely lazy, there is danger of over-eager computation. We

address each concern in turn:

� Complexity. While the internal complexity of the library is undoubtedly in-

creased due to the list duality, this extra complexity need not be exposed to

library users. Clients of the FC++ library can be oblivious of the existence

of OddLists and get along just �ne. The overloading and implicit conversions

with Lists enable users to write working code that appears to deal solely

in Lists. Lists e�ectively provide a facade that shields casual users from

the extra complexity. Nevertheless, for users who understand the details of

OddLists, the datatype is there, ready to be exploited by clients who want to

hand-tune some of their code to improve the run-time performance.
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� Eagerness. Allowing implicit conversions between OddLists and Lists sacri-

�ces some of the safety of even lists. Nevertheless, while the danger of over-

eagerness exists, it lives only in \edge cases". The examples of (Wadler, Taha,

and MacQueen, 1998), like

List<double> l = cons( 1.0, cons( 0.0, cons( -1.0, NIL )));

l = take( 2, map( sqrt, l ) );

work as expected, even though map returns an OddList. The reason is that

our OddLists have \even" tails and tail is the only way to deconstruct a list

in FC++. Only direct calls on boundary cases like

List<double> l = cons( -1.0, NIL );

l = take( 0, map( sqrt, l ) );

will cause a failure (map() tries to take the square root of -1 before take()

has the opportunity to mention that it is not interested in evaluating any

elements). Note that it is only when the original call in the client begins with

the \edge case" that the problem occurs|in the �rst of the two previous

examples, the same boundary case (which fails in the second example) is

reached after two recursive calls, but since we have already moved past the

�rst element of the list, we are safely in the \even" domain. As a result, the

edge cases are unlikely to occur in practice. When necessary, the client can

always resort to explicitly forcing the �rst element to be lazy: rather than

evaluating

map( sqrt, l )

(the o�ending expression in the boundary case), which has type OddList, the

user can evaluate

curry2( map, sqrt, l )

The latter expression evaluates to a thunk that returns an OddList, which

is implicitly convertible to an (even) List. Indeed, this strategy seems well

within the spirit of C++; C++ is an eager language, and calling a function is

an eager language mechanism, which typically produces a value (or an e�ect).

In those cases where the programmer desires extra laziness, she codes it ex-

plicitly using curryN(). This is, after all, how lazy functions like enumFrom()

are implemented (with calls to curryN()).

To summarize, the list implementation in FC++ uses a novel \hybrid" approach

to laziness. While we consider the details of this approach to be interesting and

important from an implementation perspective, we emphasize that these details

are almost never forced upon clients. We have dozens of example programs that use

FC++ lists with no knowledge of any of the details of OddLists or edge cases. The

goal of this section is simply to describe our implementation as an interesting alter-

native to the possibilities considered in reference (Wadler, Taha, and MacQueen,

1998).
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12 Library organization

The FC++ library is distributed as a set of nine C++ header �les. The physical

organization of the code matches the conceptual organization of the library.

� list.h contains the implementation of FC++ lazy lists. This includes both

the List and OddList classes and their associated functoids, most notably

head(), tail(), cons(), and null().

� function.h contains the implementation of indirect functoids (the FunN classes),

including the code that supports implicit conversion from direct to indirect

functoids and the code to support subtype polymorphism.

� curry.h contains the CurryableN combinator classes, and the bindMofN and

curryN functoids for explicit currying.

� ref_count.h contains the code for both the Ref and IRef classes, which

support non-intrusive and intrusive reference-counted pointers, respectively.

� reuse.h contains the code for the ReuserN classes, as described in Sec-

tion 10.4.

� signature.h and config.h are tiny \support" classes. signature.h con-

tains the de�nitions of the FunType and CFunType classes, which are used to

help encode the signatures of functoids as described in Section 3.2. config.h

contains some preprocessor macros that detect certain compiler versions and

work around a few known compiler bugs.

� Finally, operator.h and prelude.h contain most of the useful general-purpose

functoids in the library. operator.h includes the de�nitions of named func-

toids for all the common operators like plus and minus, as well as a number of

miscellaneous functoids. prelude.h contains a great deal of functions from the

Haskell Standard Prelude, like map, zipWith, and take. prelude.h is at the

root of the dependency tree of the headers and includes all of the other library

functionality|as a result, library users need only #include "prelude.h" to

import all of the library functionality.

As mentioned earlier, the entire library is contained in namespace fcpp, thus

shielding the names of library classes and functions from con
icting with names in

client applications. The entire library comprises about 5400 lines of code, and is

available on the FC++ web site (Smaragdakis and McNamara, 2002).

13 Applications

The FC++ library supports functional programming in C++, by enabling users

to write and manipulate polymorphic and higher-order functions. The library has

a smooth interface to the rest of C++, so that functional code and OO code can

blend well.

FC++ is useful for functional programmers because it provides an alternative,

commonly available platform for implementing familiar designs. An example of

this approach is the XR (Exact Real) library (Briggs, 2002). XR uses the FC++

infrastructure to provide exact (or constructive) real-number arithmetic, using lazy

evaluation.
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FC++ is also an interesting platform for object-oriented programming, because

it allows functional techniques to be used in conjunction with common OO styles.

In another paper (Smaragdakis and McNamara, to appear), we show how a number

of OO design patterns can be simpli�ed, generalized, or made safer using functional

programming techniques.

14 Related Work

L�aufer's paper (1995) contains a good survey of the 1995 state of the art regarding

functionally-inspired C++ constructs. Here we will only review more recent or

closely related pieces of work.

Dami (1991) implements currying in C/C++/Objective-C and shows the utility

in applications. His implementation requires modi�cation of the compiler, though.

The utility comes mostly in C; in C++, more sophisticated approaches (such as

ours) can achieve the same goals and more.

Kiselyov (1998) implements some macros that allow for the creation of simple

mock-closures in C++. These merely provide syntactic sugar for C++'s intrin-

sic support for basic function-objects. We chose not to incorporate such sugar in

FC++, as we feel the dangers inherent in C-preprocessor macros outweigh the minor

bene�ts of syntax. FC++ users can de�ne their own syntactic helpers, if desired.

Two other interesting recent approaches are FACT! (Striegnitz, 2001) and the

Boost Lambda Library (J�arvi and Powell, 2002). Both of these libraries empha-

size the \front-end", by providing lambda expressions in C++ via expression tem-

plates7 and operator overloading. FC++, on the other hand, provides sophisticated

type system support for higher-order and polymorphic functions. Hence, these ap-

proaches are complementary. Syntactic support for creating lambdas through ex-

pression templates like in FACT! or the Boost Lambda Library can be added to

FC++8. At the same time, most of the type system innovations of FC++ can be

integrated into the back-end of these libraries (enabling full support for higher-order

polymorphic functions and rank-2 polymorphism).

The C++ Standard Template Library (STL) (Stepanov and Lee, 1995) includes a

library called <functional>. It supports a very limited set of operations for creating

and composing functoids that are usable (in monomorphic form) with algorithms

from the <algorithm> library. While it serves a useful purpose for a number of C++

tasks, it is inadequate as a basis for building higher-order polymorphic functoids.

L�aufer (1995) presents a framework for supporting functional programming in

C++. His approach supports lazy evaluation, higher-order functions, and binding

variables to di�erent function values. His implementation does not include polymor-

phic functions, though, and also uses an ineÆcient means for representing function

objects. In many ways, our work can be viewed as an extension to L�aufer's; our

framework improves on his by adding both parametric and subtype polymorphism,

7 See Veldhuizen's paper (1995) for an introduction to the subject of expression templates.
8 Indeed, we are currently working on adding just such syntactic sugar: lambdas, let-bindings,
do-notation for monads, etc.
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improving eÆciency, and contributing a large functional library. L�aufer also ex-

amines topics that we did not touch upon in this paper, like architecture-speci�c

mechanisms for converting higher-order functions into regular C++ functions.

Alexandrescu's book (2001) contains a chapter on \generalized functors". These

functors are similar to our indirect functoids, except that they do not support

implicit currying or subtype polymorphism. In another chapter, Alexandrescu also

describes reference-counting mechanisms, including intrusive ref-counts, like the

ones we use with FC++'s internal reference-counted pointers.

15 Conclusions

FC++ is a library for doing functional programming in C++. In the examples

throughout the paper, we have demonstrated how the FC++ library adds many

functional programming features to C++, including

� the ability to use higher-order polymorphic functions succinctly (a major

novelty among C++ libraries),

� run-time variables which can range over functions with the same monomorphic

signature,

� currying, and

� lazy evaluation, using lists and a number of functions which lazily manipulate

lists.

These features have been implemented eÆciently, in a way that blends well with

the C++ language. It is an interesting fact, and a testimony to the extensibility

features of C++, that so much language functionality can be added in directions

that were almost certainly not foreseen when the language was designed. Although

a number of sophisticated techniques are used within the library implementation,

we have provided a library that is both useful and usable; the vast majority of the

complexity is hidden from clients of the library.

FC++ is a good platform for language experimentation, as it o�ers a combina-

tion of functional and object-oriented language features. It allows traditional C++

programmers to integrate functional techniques in their arsenal. At the same time,

it gives functional programmers a distinctly di�erent platform for experimentation.

Perhaps most importantly, FC++ brings maturity to a long line of research e�orts

in using C++ as a functional language.
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