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Abstract

Object-sensitivity has emerged as an excellent contextati®on
for points-to analysis in object-oriented languages. Dests prac-
tical success, however, object-sensitivity is poorly usti®d. For
instance, for a context depth of 2 or higher, past scalabjgeim
mentations deviate significantly from the original defimitiof an
object-sensitive analysis. The reason is that the anahgsianany
degrees of freedom, relating to which context elements ialeg@
at every method call and object creation. Weepa clean model
for the analysis design space, and discuss a formal andiafam-
derstanding of object-sensitivity and of how to create gobjct-
sensitive analyses. The results are surprising in thegngxiWe
find that past implementations have made a sub-optimal etagic
contexts, to the severe detriment of precision and perfocealNe
define a “full-object-sensitive” analysis that results igngficantly
higher precision, and often performance, for the exact seone
text depth. We also introduce “type-sensitivity” as an @iphp-
proximation of object-sensitivity that preserves hightest qual-
ity at substantially reduced cost. A type-sensitive petotanalysis
makes an unconventional use of types as context: the cayped
are not dynamic types of objects involved in the analysis,ifu
stead upper bounds on the dynamic types of their allocajectsh
Our results expose the influence of context choice on thatgual
of points-to analysis and demonstrate type-sensitivityg@n idea
with major impact: It decisively advances the state-ofdhiewith
a spectrum of analyses that simultaneously enjoy spee@rédev
times faster than an analogous object-sensitive analysia)abil-
ity (comparable to analyses with much less context-seitgiti and
precision (comparable to the best object-sensitive aizalyith the
same context depth).
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1. Introduction

Points-toanalysis (opointer analysisn our context) is one of the
most fundamental static program analyses. Points-to sisatpn-
sists of computing a static abstraction of all the data thadiater
expression (or just a variable, without loss of generalign point
to during program run-time. The analysis forms the basipfacti-
cally every other program analysis and is closely inteates with
mechanisms such as call-graph construction, since thewvaiia
pointer determine the target of dynamically resolved c¢allgh as
object-oriented dynamically dispatched method calls acfional
lambda applications. By nature, the entire challenge ofitgetio
analysis is to pick judicious approximations. Intractepilurks be-
hind any attempt to track program control- or data-flow el
Furthermore, the global character and complicated natfitbeo
analysis make it hard to determine hovifeient analysis decisions
interact with various language features. For object-dei@rand
functional languagegontext-sensitivitys a general approach that
achieves tractable and usefully high precision. Conters#ivity
consists of qualifying local program variables, and pdgdibeap)
object abstractions, with context information: the anialgsllapses
information (e.g., “what objects this method argument caimfp
to”) over all possible executions that result in the sametexdn
while separating all information for fierent contexts. Two main
kinds of context-sensitivity have been exploredll-site sensitivity
[18, 19] andobject-sensitivity13].

Ever since the introduction of object-sensitivity by Mitama et
al. [13], there has been accumulating evidence [3, 7, 8,4)0¢hAt
it is a superior context abstraction for object-orientedgoams,
yielding high precision relative to cost. The success ofecbj
sensitivity has been such that, in current practice, olgensitive
analyses have almost completely supplanted traditionidsica
sensitivgkCFA analyses for object-oriented languages. This paper
is concerned with understanding object-sensitivity intbejbor-
malizing it conveniently, and exploring design choiceg firaduce
even more scalable and precise analyses than currentgeracti

What is object-sensitivity at a high level? Perhaps the-easi
est way to describe the concept is by analogy and contrasieto t
better-known call-site sensitivity. A call-site sens##kCFA analy-
sis uses method call-sites (i.e., labels of instructioas thay call
the method) as context elements. That is, in OO terms, tHgsawa
separates information on local variables (e.g., methodraegts)
per call-stack (i.e., sequence lotall-sites) of method invocations
that led to the current method call. Similarly, the analgsiparates
information on heap objects per call-stack of method intioca
that led to the object’s allocation. For instance, in thesceample
below, a 1-call-site sensitive analysis (unlike@ntext-insensitive
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analysis) will distinguish the two call-sites of metheg on lines 7
and 9. This means that the analysis will tréai separately for two
cases: that of its argument, pointing to anythingsomeobj1 may
point to, and that 06 pointing to anythingsomeobj2 may point to.
class A {

void foo(Object o) { ... }
}

class Client {
void bar(A al, A a2) { ...
al.foo(someobjl);

a2.foo(someobj2);
}
}

In contrast, object-sensitivity uses object allocaticessi(i.e.,
labels of instructions containing reew Statement) as context ele-
ments. (Hence, a better name for “object-sensitivity” miggave
been “allocation-site sensitivity”.) That is, when a metli® called
on an object, the analysis separates the inferred factsidemeon
the allocation site of the receiver object (i.e., the obatiwhich
the method is called), as well as other allocation sites asezbn-
text. Thus, in the above example, a 1-object-sensitiveyaizalill
analyzefoo separately depending on the allocation sites of the ob-
jects thatal anda2 may point to. It is not apparent from the above
fragment neither whether anda2 may point to diferent objects,
nor to how many objects: the allocation site of the receilgect
may be remote and unrelated to the method call itself. Sityilia
is not possible to compare the precision of an object-seasind
a call-site sensitive analysis in principle. In this exaeqpl is not
even clear whether the object sensitive analysis will eranaill
calls tofoo as one case, as two, or as many more, since this de-
pends on the allocation sites of all objects that the aralyself
computes to flow inta1 andaz2.

Note that our above description has been vague: “the asalysi
separates ... facts depending on the allocation site ofetbeiver
object ... as well as other allocation sites”. What are ttfesiger
allocation sites”? The first contribution of our paper cstsof rec-
ognizing that there is confusion in the literature regagdis topic.
The original definition of object-sensitivity (see [13].gF6, p.12.)
defines the context of a method call to be the allocation $itheo
receiver objecbbj, the allocation site of the allocator objecthf’)
of obj, (i.e., the receiver object of the method that made the alloc
tion of obj), the allocation site of the allocator object @b, and
so on. Nevertheless, subsequent “object-sensitive” aaalye.g.,
[5, 8, 10, 20], among many) maintain the fundamental premise
using allocation sites as context elements, y&edin which allo-
cation sites are used. For instance, the 2-object-semsitiglysis in
the RopLe framework [7, 9] uses as method context the allocation
site of the receiver object and the allocation site ofdhker object
(i.e., an object of classlient, and nota, in our example).

In this paper, we fier a unified formal framework that captures
the object-sensitive analyses defined in the literatureadiod/s a
deeper understanding of theiffdirences. Additionally, we imple-
ment an array of object-sensitive analyses and draw irsighdut
how the choice of context relates to scalability and precisiWe
discover that the seemingly simpleffégrence of how an analy-
sis context is chosen results in largéfeiiences in precision and
performance. We use the nariudl-object sensitivityto refer to (a
slight generalization of) the original statement of objsensitivity
by Milanova et al. We argue that full-object sensitivity isexcel-
lent choice in the design space, while the choice of contexdeanin
past actual implementations is sub-optimal and resultsifistan-
tial loss of precision. Concretely, a practical outcome wf work
is to establish a 2-full-object-sensitive analysis with-akject sen-
sitive heap (shortened to “2fulllH”) as an analysis that is often

(though not always) feasible with current technology angres-
sively precise.

Perhaps even more importantly, our understanding of thadmnp
of context on the @ectiveness of an analysis leads to defining a new
variant that combines scalability with good precision. N&mwe
introduce the idea of gype-sensitivanalysis, which is defined to
be directly analogous to an object-sensitive analysisapgtoxi-
mates (some) context elements using types instead of fodislon
sites. In contrast to past uses of types in points-to aralsy.,

[1, 15, 21] and see Ryder [17] for several examples) we demon-
strate that the types used as contexts shoatde the types of the
corresponding objects. Instead, the precision of our ggesitive
analysis is due to replacing the allocation site of an olpd€ethich
would be used as context in an object-sensitive analysig) ai
upper-bound of the dynamic type @ allocator object. The result

is a substantial improvement that establishes a new swetinghe
practical tradefi of points-to analysis precision and performance.

In summary, our work makes the following contributions:

e We dfer a better understanding of the concept and variations
of object-sensitive points-to analyses. Our understandaties
on a precise formalism that captures th#atent object-sensitive
analyses, as well as on informal insights.

e We identify the diferences in past object-sensitive analyses and
analyze the influence of thesefférences on precision and per-
formance. We argue that full-object-sensitivity is a sahsally
better choice than others used in actual practice. We \valithe
impact of full-object-sensitivity for the case of a contebepth of
2. The diference is significant in terms of precision and scalabil-
ity. Our results help establish a 2fullH analysis as the state-of-
the-art for precision in object-oriented programs, amamgyses
that are often practically feasible.

e We introduce type-sensitivity, as a purposeful collapsihghe
context information of an object-sensitive analysis, idesrto
improve scalability. We discuss what is a good type-sesgsiti
context and show that the straightforward option (of reipigan
object by its type) is catastrophically bad. Instead, weniidig
an excellent choice of type context and demonstrate thaldsy
a surprisingly ideal combination of precision and scalghiA
type-sensitive analysis for a context depth of 2 is sevarads (2x
to unboundedly high) faster than a corresponding objetsitee
analysis, while keeping almost the same precision. In fhet,
run-time performance and scalability of a type-sensitivalygsis
often exceed those of a cheap object-sensitive analysitoofex
context depth, while yielding vastly more precision.

2. Formalizing Object-Sensitivity and Variations

We formalize analyses using an abstract interpretation @&m-
plified base language that closely captures the key opesatiat
practical points-to analyses perform. For this, we use Hezat
weight Java [6] in “A-Normal” form. A-Normal Featherweight
Java is identical to ordinary Featherweight Java, excegitatgu-
ments to a function call must be atomically evaluable. Fangxe,
the bodyreturn f.foo(b.bar()); becomes1 = b.bar(; f1 =
f.foo(b1); return f1;. This shift does not change the expressive
power of the language or the nature of the analysis, but ipies

the semantics and brings the language closer to the intéateed
languages that practical points-to analysis implemestiatoperate
on. Our formalism is an imperative variant (with a call stack
stead of continuations) of the corresponding formalism gt
Smaragdakis and Van Horn [12], which attempts a unified treat
ment of control-flow analysis (in functional languages) anthts-

to analysis (in imperatiy®O languages).



The grammar below describes A-Normal Featherweight Java.

Some of the Featherweight Java conventions merit a remider
class declaration always names a superclass, and lists (i
tinct from those in the superclass) followed by a single trmicsor
and a list of methods. Constructors are stylized, alwayisgak as
many parameters as total fields in the class and superclassts
consisting of a call to the superclass constructor and misggt of
the rest of the fields, all in order.

-
Class ::= class C extends C' {C” f ; K M}

. AN
K € Konst ::= C (C f){super(f) ; this.f” = {";}

M € Method = C m(C V) {CV: §)
seStmt:i=v=e;’|returnv;’

ecExp :=V|V.f|v.m(V¥) |new C (V) | (C)v

v € Var is a set of variable names
f € FieldName is a set of field names
C € ClassName is a set of class names
m € MethodCall is a set of method invocation sites
¢ € Lab is a set of labels

Every statement has a label, to provide a convenient wayfef-re
encing program points. The functisaicc: Lab — Stmt yields the
subsequent statement for a statement’s label.

2.1 Concrete Semantics

We express the semantics using a small-step state mackgnes B
contains the state space. A state consists of a statemexig atdck
(for local variables), a store, a call-stack (recordinggach active
method invocation, the statement to return to, the contexet
store, and the location that will hold the return value), arudirrent
context. Following earlier work [12], our concrete semesiantici-
pates abstraction in that variables and fields are mappezhtexd-
sensitive addresses, and the store maps such addrességscts.ob
The purpose served by the concept of a context-sensitiveessld
is to introduce an extra level of indirection (through thersj. In
the usual concrete semantics, every dynamic instance ofable
or field will have a diferent context, making context-sensitive ad-
dresses extraneous. Nevertheless, the existence of thersiges it
easy to collapse information fromftérent program paths, as long
as variables or fields map to the same context-sensitiveasidin
addition to being a map from fields to context-sensitive agses,
an object also stores its creation context. There are tfferdnt
kinds of context in this state space: a context for local (roe}
variables, and a heap context, for object fields. At a firstaap
mation, one can think of the two contexts as being the sanse set
Any infinite sets can play the role of context. By picking sfiec
context sets we can simplify the mapping from concrete ttratis
as well as capture the essence of object-sensitivity.

The semantics are encoded as a small-step transitionorelati
(=) € £ x X, shown in Figure 2. There is one transition rule for
each expression type, plus an additional transition rukectmunt
for return. Evaluation consists of finding all states readadrom
an initial state (typically a single call statement with ampgy
store and binding environment). We use standard functions
car, cdr, andfirst, to construct and deconstruct ligsacks. For

1To prevent misunderstandings, we note that the extra Iéwetimection is

the only purpose of the store in our semantics. Specifically,store is not
intended for modeling the Java heap and our stack is not imgdile Java
local variable stack (although it has similar structurejtas a map over
local variables). For instance, the store is used to also lowgh variables
to actual values, which is the purpose of a Java stack.

¢ € T = Stmt x Stackx Storex CallStackx Context
ste Stack= (Var — ContSensAddi
o € Store= ContSensAddr Obj
0 € Obj = HContextx (FieldName — ContSensAddgr
cste CallStack= (Stmt x Contextx ContSensAddf
a € ContSensAdds (Var x Contexj + (FieldName x HContexj}
¢ € Contextis an infinite set of contexts
hc € HContextis an infinite set of heap contexts.

Figure 1. State-space for A-Normal Featherweight Java.

Variable reference
(Iv=V;‘,sto,cstc) = (sucdt), st o, cst c), where
o’ = o+ [stV) - o(st(V))].
Return
([return v ;‘], st o, cst c) = (s cdr(st), o, cdr(csi, ¢’), where
(s.C', aer) = car(csy 0’ =0 + [t = o (SLV))].
Field reference
([v=V.f;,sto, cstc) = (sucdl),st o', cst c), where
- [f - af]) = o(st(v))

Method invocation

o’ = o+ [stV) - o(ar)].

(Iv=vo. m(7) ;1. st o, cst ¢) = (sp,St, 07, cst, ),
where

M=[Cm(CV)I(CV"; 8] = M(o,m)

0o = o(St(Vo)) 0 = o(st(v))
(heo, ) = 0o ¢’ = mergé’, hco, €)
ai/ — (\/i/7c/) a}/ — (V}N,C/)

o’ =0 +[a - q] cst=cong(sucg’),c, st(v)), csd
st = cong[vi" = &, V" > &], st).
Object allocation
([v=mnewC (\7) ;1. st o, cst ¢) = (sucd?), st o, cst ¢),
where

0 = o(st(v))) hc = record(¢, )

f'=7(C) a = (fi,ho)

o =(hc[fimal) o =oc+[sv)- 0] +[a o]
Casting

(Iv=(CH V],st o, cstc) = (succl), st o, cst ¢), where
o’ = o+ [stV) - o(st(V))].

Figure 2. Concrete semantics for A-Normal Featherweight Java.

convenience, we define a lookup of a variable in a stack to mean
a lookup in the top component of the stack, egj(y) means
(car(st))(v). We also use helper functions

M : Obj x MethodCall — Method

F : ClassName — FieldName*.



The former takes a method invocation point and an object and
returns the object’'s method that is called at that point ¢Wwhs
not known without knowing the receiver object, due to dyrmami
dispatch). The latter returns a list of all fields in a classnitéon,
including superclass fields.

Our semantics is parameterized by two functions that manipu
late contexts:

record : Lab x Context— HContext
merge: Lab x HContextx Context— Context

The record function is used every time an object is created, in or-
der to store a creation context with the object. Tinergefunction
is used on every method invocation. Its first argument is tineeat
call statement label, while the second and third argumeetshe
context of allocation of the method'’s receiver object aradtrrent
(caller’s) context, respectively. The key fofffdirent flavors of con-
text sensitivity is to specify dierentrecord and mergefunctions
for contexts.

For a simple understanding of the concrete semantics tblatsyi
the natural behavior one expects, we can define contextssas ju
natural numbers:

Context= HContext= N.

In that case, we need to ensure that tkeord and mergefunc-
tions never return a duplicate context. For instance, if we-c
sider labels to also map to naturals we can capture the dnsire
tory of past context creation by definimgcord(¢,c) = 2¢ - 3¢ and
mergé(, hc,c) = 57 - 7° . 11°. A different choice of context that
is closer to idealized (infinite context) object-sensits@mantics
consists of defining a context as a list of labels:

Context= HContext= Lab",

yielding a straightforwardecord function, while themergefunc-
tion can ignore its second argument:

record(¢, c) = cong/, €)
mergé’, hc, c) = cong, c).

These definitions enable every variable to havefiedint address
for different invocations, and every object field to have féedent
address for each object allocated, as expetted.

2.2 Abstract Semantics

It is now straightforward to express object-sensitive [io anal-
yses by abstract interpretation [4] of the above semanticsam
abstract domain that maintains only finite context.

The abstract state space is shown in Figure 3. The main dis-

tinctions from the concrete state-space are that the seiraéxts
is finite and that the store can returrset of objects, instead of a
single object. Generally, the abstract semantics closéisonthe
concrete.

The abstract semantics are encoded as a small-step wansiti
relation t») € X x X, shown in Figure 4. There is one abstract
transition rule for each expression type, plus an additivaasition
rule to account for return. We assume the usual properties &b
a map to sets (i.e., merging of the sets for the same value).

We similarly define abstract versions of the context-
manipulating functions:

record : Lab x Context— HContext
merge: Lab x HContextx Context— Context

2Technically, this is true only because the FJ calculus haitenation, so
object allocations from the same statement can only octer afrecursive
call. Thus, the string of labels for method calls is enouglensure that
objects have a unique context.

¢ e $ = Stmt x Stackx Storex CallStackx Context
Ste Stack= (Var — ContSensAddr
& € Store= ContSensAddr # (Obj)
6 € Obj = HContextx (FieldName — ContSensAddr
Cste CallStack= (Stmt x Contextx ContSensAdqr
a e ContSensAdde (Var x Contexj + (FieldName x HContex}
¢ e Contextis a finite set of contexts

hc € HContextis a finite set of heap contexts.

Figure 3. Object-sensitive analysis state-space for A-Normal
Featherweight Java.

Variable reference
([v=V;.5t&,cst &) ~ (sucd?), st &, st &), where
0 =G u[siv) = G(StV))].
Return
([return v ;‘],st &, Cst &) ~ (s, cdr(sh), 57, cdr(csy, &), where
(s.¥, &er) = car(csh G =6 U [&e - 0 (SHV))].
Field reference
([v=V.f ;],5L6,C8L &) ~ (sucds), st &, cst &), where
G - &)) = G(stv))

Method invocation

~

& = 6 U [S(V) = &)

IV = Vo.m(V) ;1,8 5,8t &) ~ (50, 5, &, 8L, &),
where

M=[Cm(CV)I(CV"; 8] = M(0,m)

60 € G(SH(vo)) 6 = &(sHV))
(hco, ) = & ¢ = mergd(, hey, €)
& =(V.¢) & = (v, ¢)

G =6uld — 8] cst =cong(sucdt), & stv)),csY
st = cong[v’ — &,V > &'],50).
Object allocation
(Iv=new C (v);1. 5.4, 55L ) ~ (suc). 5L, st 2),
where

6 = G(SUV)) hc = record(z, €)

= F(C) & = (fi,ho

o = (hc[fi~&]) & =&ulsv)— &]ula - 6]
Casting

([v= (C) V],5t &,Cst &) ~ (sucd?), st &, st &), where
& = & U[SHV) = GEIV))].

Figure 4. Object-sensitivity abstract semantics for A-Normal
Featherweight Java.



The abstractecord and mergefunctions capture the essence of
object-sensitivity: an object-sensitive analysis isidgtished by

its storing a context together with every allocated objeda (
record), and by its retrieving that context and using it as the basis
for the analysis context of every method dispatched on thecbob

(via nergs.
2.3 Analysis Variations and Observations

With the above framework, we can concisely characterizeast
object-sensitive analyses, as well as discuss other pligssh All
variations consist of only modifying the definitions Gontext
HContext record, andmerge

Original Object Sensitivity. Milanova et al. [13] gave the original
definition of object-sensitivity but did not implement theadysis
for context depths greater than 1. Taken literally, thein&abdefi-

nition prescribes that, for amobject-sensitive analysis, the regular
and the heap context consistrofabels:

Context= HContext= Lab",
while record just keeps the firsh elements of the context defined

in our concrete semantics, amtergediscards everything but the
receiver object context:

record(¢, &) = cong(, first, (&)
mergd¢, he, €) = hc.
In practical terms, this definition has several consequence

e The only labels used as context are labels from an object allo
cation site, via theecord function.

¢ On a method invocation, only the (heap) context of the receiv
object matters.

e The heap context of a newly allocated object is derived frioen t
context of the method doing the allocation, i.e., from thephe
context of the object that is doing the allocation.

In other words, the context used to analyze a method consists

of the allocation site of the method’s receiver object, thacation
site of the object that allocated the method’s receiver aipjine
allocation site of the object that allocated the object Hilmicated
the method’s receiver object, and so on. In the next sectien w
discuss whether this is a good choice of context for scatlaihd
precision.

Past Implementations of Object Sensitivity. For an object-
sensitive analysis with context depth 1, the context chaagb-
vious. Themergefunction has to use some of the receiver object
context, or the analysis would not be object-sensitivet ab-site-
sensitive), and the receiver object context consists dfthes ob-
ject’s allocation site.

For analyses with context depth> 1, however, the definitions
of mergeandrecord can vary significantly. Actual implementations
of such analyses deviated from the Milanova et al. definitibor
tably, the RopLe framework [7, 9] (which provides the most-used
such implementation available) merges the allocation diitthe
receiver object with multiple context elemeifitsm the caller ob-
ject contextvhen analyzing a method. This results in the following
functions:

record(¢, &) = cong(, first,, ,(€))
merge¢, he, &) = congcar(ha), first, ;(¢)).

The practically interesting case isf 2. (Higher values are well
outside current technology if the analysis is applied asédfii.e.,
the context depth applies to all program variables.) Thealefi-
nition then means that every method is analyzed using asxioat

the allocation site of the receiver object; and b) the aliocasite
of the caller object.

Heap Context, Naming, and Full-Object Sensitivity. The above
analyses defined the heap contextCpntex} and the regu-
lar/method context Gontex} to be the same set, namelyb".
There are other interesting possibilities, however. Stheemnerge
function has access to a heap context and to a regular cqatekt
needs to build a new regular context) the heap context cahdle s
lower. For instance, Lhotak’s exploration of object-s8ws analy-
ses [7] studies in depth analyses where the heap contextaysl
just a single allocation site:

HContext= Lab
Context= Lab"
record(¢, &) = ¢
mergd¢, hc, &) = conghc, first, ,(€)).

In fact, the above definition is what is most commonly called an
“object-sensitive analysis” in the literatutelhe analyses we saw
earlier are colloquially called “object-sensitive anayswith a
context-sensitive (or object-sensitive) heap”. That ligg points-
to analysis literature by convention uses context to apply t
methods, while heap objects are represented by just thetasion
site. Adding more context to object fields than just the ab@e
location site is designated with ffixes such as “context-sensitive
heap” or “heap cloning” in an analysis description. Thug needs
to be very careful with naming conventions. We summarize atir
the end of this section.

Another interesting possibility is that of keepingleepercon-
text for heap objects than for methods. The most meaningfss ¢
in practice is the one where the heap object keeps one exttexto
element:

HContext= Lab™*
Context= Lab"
record(¢, &) = cong(, ).

(The mergefunction can vary orthogonally, as per our earlier dis-
cussion.) Fon = 1, this is Lhotak’s “1objH” analysis, which is
currently considered the best tradé@{setween scalability and pre-
cision [8], and to which we refer repeatedly in our experitaén
evaluation of Section 5

This latest variation complicates naming even more. In &k'st
detailed naming scheme, the above analysis would be-abject-
sensitive analysis with ann{)object-sensitive heap”, while our
standardh-object-sensitive analysis (witBontext= HContext=
Lab") is called an f-object-sensitive analysis with an- 1-object-
sensitive heap”. The reason for th&-by-one convention is his-
torical: it is considered self-evident in the points-to lggs com-
munity that the static abstraction for a heap object willsishof
at least its allocation site label. Therefore, the heapeodns con-
sidered to ben — 1 labels, when the static abstraction of an object
consists oh labels in total.

In the rest of this paper, we adopt the standard terminoldgy o
the points-to analysis literature. That is, we talk of awrobject-
sensitive analysis with am— 1-object-sensitive heap” to mean that
Context= HContext= Lab". Furthermore, to distinguish between
the two dominant definitions ofmergefunction (Milanova et al.’s,
as opposed to that of thessdLe framework) we refer to dull-
object-sensitive analysigs. a plain-object-sensitive analysis\
full-object-sensitive analysis is characterized bhyi@gefunction:

merge’, he, &) = he.



That s, the “full” object abstraction of the receiver olijecused as
context for the method invoked on that object. In contragiam-

object-sensitive analysis merges information from theirer and
the caller objects:

record(¢, &) = cong(, first, (&)
mergd’, he, €) = congcar(ho), first, ,(€)).

Thus, the original object-sensitivity definition by Milareet al. is

a full-object-sensitive analysis, while the practicalegtjsensitive
analysis of the BbpLe framework is plain-object-sensitive. We ab-
breviate plain-object-sensitive analyses foffatient context and
heap context depths taplain+mH” and full-object-sensitive anal-
yses to hfull+mH". When the two analyses coincide, we use the
abbreviation hobj+mH".

Discussion. Finally, note that our theoretical framework is not
limited to traditional object-sensitivity, but also encpasses call-
site sensitivity. Namely, thetergefunction takes the current call-
site label as an argument. None of the actual object-seasitialy-
ses we saw above use this argument. Thus, our frameworksisgge
a generalized interpretation of what constitutes an otgensitive
analysis. We believe that the essence of object-sengit/itot in
“only using allocation-site labels as context” but in “sitgy an ob-
ject’s creation context and using it at the site of a methedda-
tion” (i.e., the functionality of themérgefunction). We expect that
future analyses will explore this direction further, pasgicombin-
ing call-site and allocation-site information in inteiagtways.

Our framework also allows the same high-level structurenof a
analysis but with dferent context information preserved. Section 4
pursues a specific direction in this design space, but giynera
can produce analyses by using as contay abstractions com-
putable from the arguments to functiaesord andmerge(with ap-
propriate changes to th@ontextandHContextsets). For instance,
we can use as context coarse-grained program locationmafor
tion (module identifiers, packages, user annotationsgsimese are
uniquely identified by the current program statement lab&jmi-
larly, we can make diierent context choices forftierent allocation
sites or call sites, by defining thecord and mergefunctions con-
ditionally on the supplied label. In fact, there are few epéen of
context-sensitive points-to analyses that cannot be ceghtay our
framework, and simple extensions wouldfsze for most of those.
For instance, a context-sensitive points-to analysisahgiloys as
context a static abstraction of the arguments of a methddarad
not just of the receiver object) is currently not directlypesssible
in our formalism. (This approach has been fruitful iffelient static
analyses, e.g., for type inference [1, 15].) Nevertheliessa sim-
ple matter to adjust the form of tl@érgefunction and the “method
invocation” rule in order to allow the method call contexgiso be
a function of the heap contexts of argument objects.

3. Insights on Context Choice

With the benefit of our theoretical map of context choices for
object-sensitivity, we next discuss what makes a scalaidepae-
cise analysis in practice.

3.1 Full-Object-Sensitivity vs. Plain-Object-Sensitiviy

The first question in our work is how to select which context el
ments to keep—i.e., what is the best definition of t@rgefunc-
tion for practical purposes. We already saw the two mainrdist
tions, in the form of full-object-sensitive vs. plain-objesensitive
analyses. Consider the standard case of a 2-object-senaital-
ysis with a 1-object-sensitive heap, i.e., per the standarding
convention,Context= HContext= Lab?. The 2fulk-1H analysis
will examine every method using as context the allocatite of

the method’s receiver object, and the allocation site ofafleca-

tor of this receiver object. (Recall that all informatiorr fmethod
invocations under the same context will be merged, whilerimf-

tion under diferent contexts will be kept separate.) In contrast the
2plaint-1H analysis examines every method using as context the
allocation site of the receiver object, and the allocativa sf the
caller object.

The 2fulk-1H analysis has not been implemented or evaluated
in practice before. Yet with an understanding of how conierim-
ployed, there are strong conceptual reasons why one maygtexpe
2full+1H to be superior to 2plairilH. The insight is that context
serves the purpose of yielding extra information to clgssly-
namic paths, at high extra cost for added context depth.,Thus
context to serve its purpose, it needs to be a good classifiéting
the space of possibilities in roughly uniform partitionsh& mix-
ing context elements (allocation site labels) from the ixereand
the caller object (as in the 2plaidH analysis), the two context el-
ements are likely to be correlated. High correlation me&as &
2-object-sensitive analysis isfectively reduced to a high-cost 1-
object-sensitive one. In a simple case of context corgaan ob-
ject calls another method on itself: the receiver objectthraaller
object are the samEThere are many more patterns of common ob-
ject correlation—knowing that we are executing a methodopéct
p almost always yields significant information about whicljeab
g is the receiver of a method call. Wrapper patterns, proxy pat
terns, the Bridge design pattern, etc., all have pairs cdaibjthat
are allocated and used together. For such cases of relg@ctsgb
one can see thdfect in intuitive terms: The traditional mixed con-
text of a 2plair-1H analysis classifies method calls by asking ob-
jects “where were you born and where was your sibling born?” A
2full+1H analysis asks “where were you born and where was your
parent born?” The latter is a bettefférentiator, since birth loca-
tions of siblings are more correlated.

3.2 Context Depth and Analysis Complexity

The theme of context element correlation and fis@ on precision

is generally important for analysis design. The rule of thuin
that context elements should be as little-correlated asilplesfor

an analysis with high precision. To see this consider howesan
depth dects the scalability of an analysis. There are two opposing
forces when context depth is increased. On the one hanéased
precision may help the analysis avoid combinatorial exphlsOn

the other hand, when imprecision will occur anyway, a deeper
context analysis will be significantly less scalable.

For the first point, consider the question “when can an aiglys
with a deeper context outperform one with a shallower cdftex
Concretely, are there cases when a 2-object-sensitivgsasiavill
be faster or more scalable than a 1-object-sensitive ara(fix
otherwise the same analysis logic, i.e., both plain-objudrdbj)?
Much of the cost of evaluating an analysis is due to propagati
matching facts. Consider, for instance, the “Variable nexfiee”
rule from our abstract semantics in Figure 4, which resuits i
an evaluation of the forme”" = & U [Si(v) — &(St(v))]. For
this evaluation to be faster under a deeper context, theufok
&(st(v")) should return substantially fewer facts, i.e., the asialy
context should result in much higher precision. Specifjcalto
conditions need to be satisfied. First, the more detailedezon
should partition the facts well: the redundancy should beimmel
between partitions in context-depth-2 that would projectthe
same partition with context depth 1. Intuitively, adding extra
level of context should not cause all (or many) facts to bécefed

3This case can be detected statically by the analysis, artéxtarpetition
can be avoided. This simple fix alone is noftstient for reliably reducing
the imprecision of a 2plaiilH analysis, however.



for all (or many) extra context elements. Second, fewesfalsbuld

be produced by the rule evaluation at context depth 2 reldtv
depth 1, when compared after projection down to depth-Xfaat
other words, going to context depth 2 should be often enoagh t
tell us that some object does not in fact flow to a certain ltexdn
sensitive variable, because the assignment is invalidhghve more
precise context knowledge.

Expressed in our framework, the 2tygEH analysis has:
HContext= Lab x ClassName
Context= ClassName?.

Note again the contrast of the standard convention of thetpod
analysis community and the structure of abstractions: tyype21H

In case of imprecision, on the other hand, the deeper context analysis also includes an allocation site label in the statistrac-

will almost always result in a combinatorial explosion oé thos-
sible facts and highly irficient computation. When going from a
lobj+H analysis to a 2fultH or 2plaintH, we have every fact an-
alyzed in up taN times more contexts (whelis the total number

of context elements, i.e., allocation sites). As a rule oftb, ev-
ery extra level of context can multiply the space consunmpéind
runtime of an analysis by a factor &f, and possibly more, since
the N-times-larger collections of facts need to be used to index i
other N-times-larger collections, with indexing mechanisms (and
possibly results) that may not be linear.

It is, therefore, expected that an analysis with deeperesont
will perform quite well when it manages to keep precise fastsle
exploding in runtime complexity when the context is noffiient
to maintain precision. Unfortunately, there are inevigabburces
of imprecision in any real programming language—theseuntel
reflection (which is impossible to handle soundly and pedgjs
static fields (which defeat context-sensitivity), arragsceptions,
etc. When this imprecision is not well-isolated an@eats large
parts of a realistic program, the points-to analysis withast cer-
tainly fail (within any reasonable time and space bound)s pho-
duces ascalability wall effect: a given analysis on a program will
either terminate quickly or will fail to terminate “ever’r(ipracti-
cal terms). Input characteristics of the program (e.ge sietrics)
are almost never good predictors of whether the programbaill
easy to analyze, as this property depends directly on thecéeul
analysis imprecision.

tion of an object—this aspect is considered so essentiglittig
not reflected on the analysis name. Approximating the diloca
site of the object itself by a type would be possible, butidetntal
for precision.

Generally, type-contexts and object-contexts can be rdemge
any level, as long as therergefunction can be defined. An in-
teresting choice is an analysis that merely replaces oneedfito
allocation sites of 2fult 1H with a type, while leaving all the rest of
the context elements intact. We call this a 1-type-1-okgecisitive
analysis with a 1-object-sensitive heap, and shorten theerna
“ltypelobjr1H". Thatis, a 1typelobjlH analysis has:

HContext= Lab?
Context= Lab x ClassName.

The 2type-1H and the ltypelokjlH analyses are the most
practically promising type-sensitive analyses with a eghtlepth
of 2. Their context-manipulation functions can be desctitgth
the help of an auxiliary function

9 : Lab — ClassName,

which retrieves a type from an allocation site label. Fop2aiiH,
the context functions beconie:

record(t, € = [C1,C2]) = [£,Ci]
mergé/, hc = [¢,C1. ) = [T(£),C],

The challenge then becomes whether we can maintain high hile for 1typelobj1H, the two functions are:

precision while reducing the possibility for a combinaabblowup
of analysis facts due to deeper context. We next introduceva n
approach in this direction.

4. Type-Sensitivity

If an analysis with a deeper context by nature results in ebooan
torial explosion in complexity, then a natural step is toussl the
base of the exponential function. Context elements in arabbj
sensitive analysis are object allocation sites, and typicagrams
have too many allocation sites, making the product of thebam
of allocation sites too high. Therefore, a simple idea falaigility
is to use coarser approximations of objects as contexegadsbf
complete allocation sites. This would collapse the possibmbi-
nations down to a more manageable space, yielding impraadd s
ability. The most straightforward static abstraction tte approx-
imate an object is a type, which leads to our idea tyjpe-sensitive
analysis.

4.1 Definition of Type-Sensitive Analysis

A type-sensitive analysis is almost identical to an obgantisitive
analysis, butwhereas an object-sensitive analysis would keep an
allocation site as a context element, a type-sensitiveyaimkeeps

a type instead Consider, for instance, a 2-type-sensitive analysis
with a 1-type-sensitive heap (henceforth “2tydé!”). The method
context for this analysis consists of two types. (For now wendt
care which types. We discuss later what types yield highigi@t)

4Despite the name similarity, our type-sensitive pointsualysis has no
relationship to Reppy’s “type-sensitive control-flow arsas” [16], which
uses types to filter control flow facts in a context-insemsitinalysis.

record(¢, & = [¢',C]) = [¢, ]
meTgéc, he = [61. 6], €) = [(1, T ()],

In other words, the two analyses are variations of 2flHl (and
not of 2plain-1H), with some of the context information down-
graded to be types instead of allocation site labels. Thetimm7™
makes opaque the method we use to produce a type from an allo-
cation site, which we discuss next.

4.2 Choice of Type Contexts

Just having a type as a context element does not tell us hod/ goo
the context will be for ensuring precision—the choice ofeyp of
paramount importance. The essence of understanding whsti-co
tutes a good type context is the question “what does an aiboca
site tell us about types?” After all, we want to use types asaase
approximation of allocation sites, so we want to maintairshas
the information that allocation sites imply regarding type

The identity of an allocation site, i.e., an instructiatew AQ”
inside clasg, gives us:

e the dynamic type of the allocated object

e an upper bound on the dynamic type of thallocator object.
(Since the allocation site occurs in a method of classhe
allocator object must be of typeor a subclass ot that does
not override the method containing the allocation site.)

5We use common list and pattern-matching notation to avaid kexpres-
sions. E.g., tecord(, & = [C1, C2])” means “when the second argumecyt, ~
of recordis a list of two element<C; andCs...".



A straightforward option would be to define ti¥e function to
return just the type of the allocation site, i.e., typabove. This
is an awful design decision, however. To see why, considgrtfie
case of a 2typelH analysis. When we analyze a method context-
sensitively and the first element of the context is the typéhef
receiver object, we ardfectively wasting most of the potential of
the context. The reason is that the method under analysadbir
gives us enough information about the type of the receiviEobb-
i.e., the identity of the method and the type of the receiver a
closely correlated. If, for instance, the method being yred is
“B::foo” (i.e., methodfoo defined in class) then we already have
a tight upper bound on the dynamic type of the receiver object
the receiver object’s type has to be eitBesr a subclass of that
does not override methofbo. Since we want to pick a context
that is less correlated with other information and yieldamniegful
distinctions, a 2typelH analysis should have it function return
the type in which the allocation takes place, i.e., claabove.

A similar argument applies to a 1typelefiH analysis. In this
analysis the method context consists of the receiver glgsatell
as a type. We want 1typelaetiH to be a good approximation of
2full+1H, which would keep two allocation sites instead (that ef th
receiver object and that of the receiver object’s allocatgject).
Thus the two allocation sites of 2fullH give us the following
information about types:

e the dynamic type of the receiver object

e an upper bound on the dynamic type of the receiver object’s
allocator object

e the dynamic type of the receiver object’s allocator object

e an upper bound on the dynamic type of the receiver object’s
allocator’s allocator object.

The first two pieces of information, above, come from the iden
tity of the receiver object’s allocation site, and, thug kept intact
in a 1typelobj1H analysis. The question is which of the last two
types we would like to keep. The high correlation of the selcamd
third bullet point above (upper bound of a type and the typelfit
makes it clear that we want to keep the type of the last biiltet
is, in all scenarios, the function(l), whenl represents an instruc-
tion “new AQ)” inside classc, should return typ& and not types.
We validate this understanding experimentally as part@fésults
of the next section.

5. Implementation and Evaluation

We implemented and evaluated several object-sensitivlysem
for a context depth up to 2, which meets the limit of practtgal
for real-world programs. The questions we want to answetedb
the main new ideas presented so far:

e Is full-object-sensitivity advantageous compared to rplai
object-sensitivity in terms of precision and performaraear-
gued in Section 3.1? (Recall that full-object-sensitivalgses
had not been implemented in the past for context depth greate
than 1.)

¢ Does the definition of functio™ matter, as predicted in Sec-
tion 4.2?

¢ Does type-sensitivity achieve higher scalability thanuiag
object-sensitive analyses while maintaining most of thexipr
sion?

5.1 Setting

Our implementation is in the context of the& framework [2, 3].
Door uses the Datalog language to specify analyses declasativel
Additionally, Door employs arexplicit representation of relations,

listing all the elements of tuples of related elements eitpfi as
opposed to employing Binary Decision Diagrams (BDDs), Whic
have often been used in points-to analysis [7, 8, 22, 23]. As w
showed in earlier work [3] BDDs are only useful when the sieléc
context abstractions introduce high redundancy, whiléyaea that
take care to avoid unnecessary imprecision are significéadter
and scalable in an explicit representatiomoBis a highly scalable
framework and implements veryfeiently the most complex and
precise context-sensitive analyses in current use [@jrR@chieves
functional equivalence (identical results) with LhotakdaHen-
dren’s RopLe system [8], which is another feature-rich framework
for precise analyses, but based on an entirglgdint architecture
(using semi-declarative analysis specifications and BDsfre-
sent relations). This equivalence of results is useful $balglishing
that an analysis is correct and meaningful, which is a ptgdar
from granted for complex points-to analysis algorithms.

We use a 64-bit machine with a quad-core Xeon E5530 2.4GHz
CPU (only one thread was active at a time). The machine haB24G
of RAM, but we have found no analysis that terminates (within
two hours, but also occasionally allowing up to 12) aftenuging
more than 12GB of memory. Most analyses require less than 2GB
with only the longest running analyses (over 1000 seconds ru
time) occasionally needing more memory. This is indicatif’éhe
scalability wall described earlier: the explosion of comsenithout
a corresponding increase in precision makes an analysitable
quite abruptly.

We analyzed the DaCapo benchmark programs, v.2006-10-
MR2, with JDK 1.4 (j2rel1.4.218). These benchmarks are the
largest in the literature on context-sensitive pointsralgsis.

We analyzed all benchmarks except hsqldb and jython with the
full Door functionality and support for language features, includ-
ing native methods, reflection (a refinement of Livshits &t algo-
rithm [11] with support for reflectively invoked methods acoh-
structors), and precise exception handling [2]. Generally set-
tings are a superset (i.e., more complete feature supjpart)grior
published benchmarks onobr [2, 3]. (The Door language fea-
ture support is among the most complete in the literatureloas
umented in detail in the past [3].) Hsgldb and jython coultl e
analyzed with reflection analysis enabled—hsqgldb cannen e
analyzed context-insensitively and jython cannot evenriadyaed
with the 1obj analysis. This is due to vast imprecision idtroed
when reflection methods are not filtered in any way by constant
strings (for classes, fields, or methods) and the analy$issira
large number of reflection objects to flow to several varigh(E.g.,
in the theoretically worst case 244 sites in jython can beried to
allocate over 1.1 million abstract objects.) For these tppliaa-
tions, our analysis has reflection reasoning disabled.eSisqldb
in the DaCapo benchmark code has its main functionalitgdalia
reflection, we had to configure its entry point manually.

5.2 Full-object-sensitivity vs. Plain-object-sensitivy

Figure 5 shows the precision comparison of a 2pldid and a
2full+1H analysis for a subset of the DaCapo benchmarks. For
reference, we also include a context-insensitive, 1-dgensitive
and 1obj1H analysis, and indicate how the metrics change from an
analysis to the next more precise one. The metrics are a raigfu
core points-to statistics and client analysis metricsemdsling the
methodology of Lhotak and Hendren [8]. For ease of refezene
highlight (in bold) some of the most important metrics: thenber

of methods inferred to be reachable (including both apptoa
methods and methods in the standard Java library), thege/eea-
points-to set (i.e., how many allocation sites a variable i&fer

to), the total number of call sites that are found to be polsphiz
(i.e., for which the analysis cannot pinpoint a single mdthse the
target of the dynamic dispatch), and the total number ofsdhsit



insensitive lobj | lobj+H | 2plain+1H | 2full+1H

call-graph edges 43055 -559 -1216 -1129 -368
reachable methods 5758 -29 -37 -62 -21
total reachable virtual call sites 27823 -128 -96 -272 -139
total polymorphic call sites 1326 -38 -22 -38 -68
application reachable virtual call sites 16393 0 0 0 -9

% application polymorphic call sites 851 0 0 0 0
@ | total reachable casts 1038 -14 -15 -33 -6
total casts that may fail 844 -136 -94 -144 -64
application reachable casts 308 0 0 0 -1
application casts that may fail 262 -8 -38 -66 -23
average var-points-to 216.71 24.7 15.1 8.5 8.2
average application var-points-to 327.27 20.8 15.3 8.8 8.5
call-graph edges 44930 | -1239 -2063 -2287 -765
reachable methods 8502 -76 -87 -115 -53
total reachable virtual call sites 23944 -233 -327 -368 -172
total polymorphic call sites 1218 -90 -24 -83 -119
application reachable virtual call sites 3649 0 -8 -47 -12

5| application polymorphic call sites 110 -4 -13 -10 -4
‘S| total reachable casts 1728 -22 -38 -58 -7
total casts that may fail 1457 -182 -252 -164 -120
application reachable casts 232 0 -4 -21 -1
application casts that may fail 196 -17 -64 -32 -38
average var-points-to 98.35 36.0 20.1 9.4 6.7
average application var-points-to 55.35 27.2 14.4 5.0 2.8
call-graph edges 36057 | -1342 -2499 -1900 -803
reachable methods 6541 -67 -153 -83 -49
total reachable virtual call sites 18447 -291 -315 -356 -226
total polymorphic call sites 873 -96 -25 -38 -89

o | application reachable virtual call sites 5959 -101 -53 -31 -44
2| application polymorphic call sites 292 -40 -9 -3 -3
§ total reachable casts 1270 21 21 -27 24
total casts that may fail 1001 -213 -103 -133 -51
application reachable casts 476 -3 -2 -8 0
application casts that may fail 362 -61 -55 -58 1
average var-points-to 102.7 21.8 16.1 9.8 9.1
average application var-points-to 104.1 22.9 15.8 9.6 9.4
call-graph edges 24069 -663 -1155 -1119 -354
reachable methods 4742 -31 -34 -64 -20
total reachable virtual call sites 12675 -193 -117 -276 -130
total polymorphic call sites 507 -50 -22 -38 -66

« | application reachable virtual call sites 1267 -65 -29 -4 0
8| application polymorphic call sites 39 -10 0 0 0
£ total reachable casts 790 -14 -15 -33 -5
| total casts that may fail 627 -129 -69 -96 -43
application reachable casts 63 0 -1 0 0
application casts that may fail 46 -3 -18 -13 -2
average var-points-to 69.66 14.7 10.8 6.5 6.3
average application var-points-to 90.05 9.2 59 3.0 2.9
call-graph edges 30990 -527 -1329 -809 -1043
reachable methods 6158 -34 -44 -37 -62
total reachable virtual call sites 16029 -144 -163 -208 -280
total polymorphic call sites 576 -42 -26 -21 -107
application reachable virtual call sites 4545 -22 -87 -5 -83

'g application polymorphic call sites 93 -2 -10 -4 -24
S| total reachable casts 1260 -15 -15 -13 -27
total casts that may fail 1066 -137 -97 -94 -78
application reachable casts 531 -2 -2 0 -2
application casts that may fail 485 -11 -43 -32 -21
average var-points-to 88.08 22.3 15.8 8.2 7.3
average application var-points-to 102.3 29.7 26.1 8.5 8.0

Figure 5. Precision metrics for 2plairilH and 2fulk-1H for a subset of the DaCapo benchmarks. The last two métegsrage ...”) are in
absolute numbers, the rest are given relative tartiraediately precedingolumn ot relative to the numbers in the “insensitive” column).
All metrics are end-user (i.e., context-insensitive) restrVar-points-to is the main relation of a points-to asaylinking a variable to the
allocation sites it may be referring to. (The average is ®@eiables.) “Reachable methods” is the same as call-gragks) hence the first
two metrics show how precise is the on-the-fly inferred gadlph. “Polymorphic call-sites” are those for which thelgsia cannot statically
determine a unique receiver method. “Casts that may fa@l'tlaose for which the analysis cannot statically deterntingthey are safe.



may fail at run-time (i.e., for which the analysis cannotistdly

determine that the cast is always safe). These metrics pdanty

complete picture of relative analysis precision, althotigé rest
of the metrics are useful for framing (e.qg., for examiningvitbe
statistics vary between application classes and systearikds, for
comparing to the total number of reachable call sites,.etc.)

As can be seen in Figure 5, 2fyllH is almost always signif-
icantly more precise than 2plaiiH, even though both analyses
have the same context depth. Th&elience in precision is quite
substantial: For several metrics and programs (e.g., phelthet-
rics for pmd, or reduction in total polymorphic virtual caltes for
many programs), the flerence between full-object-sensitivity and
plain-object-sensitivity is as large as any other singég-sncre-
ment in precision (e.g., from 1-obj to 1akj).

Perhaps most impressively, this precision is accompanjed b
substantially improved performance. Figure 6 shows thaingm
time of the analyses, together with two key internal comipjex
metrics: the number of edges in the context-sensitive izaily
(i.e., how many context-qualified methods are inferred tbraaw
many other context-qualified methods) and the size of theegon
sensitive var-points-to set, i.e., the total number of<dnferred
that relate a context-qualified variable with a contextldjed al-
location site.

The running time of 2fult1H is almost always much lower
than that of 2plaim1H. The case of “chart” is most striking, with
2full+1H finishing in well under a third of the time of 2plaitiH,
while achieving the much higher precision shown in Figure 5.
The internal metrics show that 2fullH makes excellent use of
its context and has substantially lower internal compjexitan
2plair+-1H. Note that the statistics for context-sensitive vampsi
to are quite low, explaining why the analysis is faster, sipach
variable needs to be examined only in a smaller number oegtsit
A second reason why such internal metrics are importantais th
the performance of an analysis depends very much on algadth
and data structure implementation choices, such as whBbbs
are used to represent large relations. Internal metricthe@wther
hand, are invariant and indicate a complexity of the analjfsat
often transcends representation choices.

It is easy to see from the above figures that full-object-
sensitivity makes a much better choice of context than paject-
sensitivity, resulting in both increased precision anddrgterfor-
mance. In fact, we have found the 2ftdlH analysis to be a sweet
spot in the current set of near-feasible analyiseerms of preci-
sion Adding an extra level of context sensitivity for object fis)
yielding a 2fulk-2H analysis, adds extremely little precision to the
analysis results while greatly increasing the analysis cos

In fact, for the benchmarks shown, 2fullH is even signifi-
cantly faster than the much less precise 6hjNevertheless, the
same is not true universally. Of the 10 DaCapo benchmarksrin o
evaluation set, 2fui1H handles 6 with ease (the 5 shown plus
“lusearch” which has very similar behavior to “luindex”) thits
running time explodes for the other 4. The 2plali analysis ex-
plodes at least as badly for the 4 benchmarks, but a+tblajnal-
ysis handles 9 out of 10, and a 1-obj analysis handles alleshth
In short, the performance (and internal complexity) of ahhjg
precise but deep-context analysis is bimodal: when pi@tis
maintained, the analysis performs admirably. When, howeig-
nificant imprecision creeps in, the analysis does badlyesihe
number of contexts increases in combinatorial fashion.

Therefore, 2fulk1H achieves excellent precision but is not a
good point in the design space in terms of scalability. (nphst,
the only fully scalable uses of object-sensitivity with tlep 1
have applied deep context to a small, carefully selectedegutf
allocation sites; we are interested in scalability when wh®le

program is analyzed with the precision of deep context.} Thihe
shortcoming that we expect to address with type-sensitiag/aes.

5.3

In Section 4.2 we argued that, for judicious use of the extra c
text element, functior™ has to be defined so that it returns the
enclosing type of an allocation site and not the type thateis b
ing allocated. Experimentally, this is very clearly the &aFig-
ure 7 demonstrates this for two of our benchmark programe (th
alphabetically first and last, which are representativehefrest).
lobjH is shown as a baseline, to appreciate thgedénce. With
the “wrong” type context, a 1typelok]lH analysis is far more ex-
pensive and barely more precise than téhjwhile with the right
type context the analysis is impressively scalable andszduery
close to 2full-1H, as we show later).

As can be seen, the impact of a good context is highly signif-
icant, both for scalability (in terms of time and internal tnies)
and for precision. In our subsequent discussion we assumalth
type-sensitive analyses use the superior context, as defbeve.

Importance of Type Context Choice

5.4 Type-Sensitivity Precision and Performance

We found that type-sensitivity fully meets its stated gaayields
analyses that are almost as precise as full-object-sengities,
while being highly scalable. In fact, type-sensitive asalky seem
to clearly supplant other current state-of-the-art aredyse.g.,
both 2type-1H and ltypelokjlH seem overwhelmingly better
than 1objH in both precision and performance for most of our
benchmarks and metrics.

Our experiment space consists of the four precise analyses
that appear feasible or mostly-feasible with current caipiais:
lobjH, 2type+1H, 1typelobj1H, and 2fulk1H. Figure 8 shows
the results of our evaluation for 8 of the 10 benchmark progra
(There is some replication of numbers compared to the puewti-
bles, but this is limited to columns included as baseliné&)omit
lusearch for layout reasons, since it behaves almost hlytito
luindex. We discuss the final benchmark, hsgldb, in textdioutot
listit on the table because 2typgH is the only of the four analyses
that terminates on it.

Note that the first two analyses (1etbj, 2type+1H) are seman-
tically incomparable in precision but every other pair hgwav-
ably more precise analysis, so the issue concerns the ambunt
extra precision obtained and the running time cost. Spadific
2full+1H is guaranteed to be more precise than the other three anal-
yses, and 1typelobjlH is guaranteed to be more precise than ei-
ther 1objH or 2typer1H.

The trends from our experiments are quite clear:

e Although there is no guarantee, 2tydd is almost always more
precise than 1objH, hence the 2typelH precision metrics (re-
ported in the table relative to the preceding column, i.ebj#H)
are overwhelmingly showing negative numbers (i.e., an aver
ment). Additionally, 2typelH is almost always (for 9 out of
10 programs) the fastest analysis in our set. In all but ose,ca
2typet1H is several times faster than 1ebj—e.g., 5x faster
or more for 4 of the benchmarks. The clear improvement of
2type+1H over 1lobjH is perhaps the most important of our ex-
perimental findings. Recall that 1alj is currently considered
the “sweet spot” of precision and scalability in practicduighly
precise analysis, that is still feasible for large programithiout
exploding badly in complexity.

e 2type+1H achieves great scalability for fairly good precision. It
is the only analysis that terminates for all our benchmaidx pr
grams. It typically produces quite tight points-to setsthvéntir
being a significant exception that requires more examinatio
terms of client analyses and end-user metrics, the inciagse-



insensitive lobj | 1lobj+H | 2plain+1H | 2full+1H

+ | time (sec) 86.5 134.0 427.4 236.9 161.1
E context-sensitive callgraph edges (thousands) 1,484 966 1,428 2,458
context-sensitive var-points-to (thousands) 13,143 8,147 | 49,237 24,980 9,279

+ | time (sec) 72.2 380.2 | 1199.2 2496.0 688.2
8| context-sensitive callgraph edges (thousands) 1,463 1,087 9,564 7,469
© | context-sensitive var-points-to (thousands) 7,054 | 19,942 | 83,354 107,221 22,854
Q1 time (sec) 67.2 228.0 826.0 502.0 480.4
%‘ context-sensitive callgraph edges (thousands) 1,921 1,278 2,103 5,341
@ | context-sensitive var-points-to (thousands) 5,754 9,962 64,586 65,435 22,574
% | time (sec) 37.9 63.2 179.3 123.9 124.3
E context-sensitive callgraph edges (thousands) 384 324 779 1,227
2| context-sensitive var-points-to (thousands) 2,737 2,781 16,968 9,576 5,072
o | time (sec) 57.7 120.0 293.7 392.6 160.0
g_ context-sensitive callgraph edges (thousands) 553 418 3,610 1,614
context-sensitive var-points-to (thousands) 4,392 5,314 | 24,902 35,628 6,770

Figure 6. Performance and complexity metrics for object-sensithadyses. 2full- 1H is almost always faster than 2plaibH (some striking
cases are highlighted). Additionally, 2fsllH makes good use of context and has often substantially imternal metrics than 2plaiiH,

and typically even than 1obH.

1lobj+H 1typelobj+1H 1lobj+H 1typelobj+1H

bad context | good context bad context | good context

call-graph edges 41280 -329 -1124 call-graph edges 35908 -408 -1290
reachable meths 5692 -3 -78 reachable meths 7237 -2 -86
reachable v-calls 27599 -2 -404 reachable v-calls 19828 -2 -389
poly v-calls 1266 -51 -27 poly v-calls 1175 -52 -51
reach. v-calls in app 16393 0 -9 reach. v-calls in app 7709 0 0
poly v-calls in app 851 0 0 poly v-calls in app 726 -2 -6

~ | reachable casts 1009 -1 -38 c | reachable casts 1264 -1 -37
% casts that may fail 614 -4 -157 % casts that may fail 668 -5 -123
reach. casts in app 308 0 -1 *| reach. casts in app 501 0 0
casts in app may fail 216 0 -61 casts in app may fail 250 -4 -23
avg var-points-to 15.14 10.62 8.19 avg var-points-to 14.94 14.03 9.57

avg app var-points-to 15.25 9.02 8.51 avg app var-points-to 15.73 15.14 11.58
time (sec) 427.4 376.7 114.2 time (sec) 979.9 4398.9 831.0

c-s callgraph edge (K) 965 816 960 c-s callgraph edge (K) 936 4915 2580

c¢-s var-points-to (K) 49237 43030 7459 c¢-s var-points-to (K) 96021 163916 38205

Figure 7. Precision, performance, and internal complexity metrwsd type-object-sensitive analysis with a good and a badtehuf
context. The entries are the same as in Figures 5 and 6, wititmames condensed. As in Figure 5, all but the last twoigi@t metrics
are reported as fierences relative to thenmediately precedingolumn (i.e., we are showing how much more precision the gmodext
yields over the already higher precision of the bad contettpver the baseline).

cision going from 1objH to 2type+1H is often greater than that
of going from 2type-1H to 2full+1H. Overall, 2type1H is an
excellent approximation of 2full1H given its low cost.

e Although not shown on the table, 2typeH is not just faster
than the three shown analyses but also faster than 1obj,dat 7
of 10 benchmark programs. Thefldirence in precision between

At the same time, 1typeloblH avoids many of the scalability
problems of 2full-1H: it terminates on 8 of 10 benchmarks (in-
stead of 6 out of 10) and is always faster than 2flif, occasion-
ally (e.g., chart) by a significant factor.

6. Conclusions

the two analyses is enormous, however. A good example is the |n this paper we strove for a better understanding of the epinc

hsqldb benchmark, omitted from Figure 8 since 2typl is the
only analysis with a context-sensitive heap that termmé&teit.
2type+1H processes hsqldb slightly faster than 1obj (404sec in-
stead of 464sec). At the same time, all precision metricsli@as-
tically better. The points-to sets are almost half the slZeJ to-

tal vs. 22.1, and 13.2 for application vars only vs. 18.2).d0er
precision metrics the fierence between 2typ&H and 1lobj is
much greater than that between 1lobj and a context-insensiti
analysis. For “application casts that may fail” alone, 2typobj
eliminates 117 instances relative to 1obj.

e 1typelobj1H is highly precise and its fierence from 2fult 1H
is rarely significant. (It is illuminating to add the two cahms
and compare the cumulativefitirence of 1typelobflH from
lobj+1H, relative to the dference of the former from 2futtLH.)

of object-sensitivity in points-to analysis. Our explaoat led to

a precise formal modeling, to a complete mapping of pastobbje
sensitive analyses in the literature, as well as to insighthiow
context &ects the precision and scalability of an analysis. One con-
crete outcome of our work is to establish full-object-sgvisy (and
especially a 2fult 1H analysis) as a superior choice of context com-
pared to others in past literature. Additionally, we havedaduced
the concept of type-sensitivity and applied our insightpitdk an
appropriate type to use as context of a points-to analybis ré@sult

is arange of analyses, especially 2tyfpél and 1typelokjlH, that
have very good to excellent scalability, while maintainingst of
the precision of a much more expensive analysis. The newsesl
we introduced are current sweet spots in the design spaceepnd
resent a significant advancement of the state-of-the-gmiints-to
analysis.



1lobj+H 2type ltype 2full lobj+H 2type 1type 2full
+1H | lobj+1H +1H +1H | lobj+1H +1H
call-graph edges 41280 -1401 -52 -44 call-graph edges 30370 -2091
reachable meths 5692 =77 -4 -2 reachable meths 5754 -118
reachable v-calls 27599 -405 -1 -5 reachable v-calls 16057 -830
poly v-calls 1266 -70 -8 -28 poly v-calls 768 -71
reach.v-calls in app 16393 -9 0 0 reach. v-calls in app 7146 -492
poly v-calls in app 851 0 0 0 poly v-calls in app 422 0
+ | reachable casts 1009 -39 0 0 S| reachable casts 1272 -18
‘% casts that may fail 614 -104 -57 -47 || €| casts that may fail 741 -11
reach. casts in app 308 -1 0 0 || | reach. castsin app 677 0
app casts may fail 216 -53 -8 -28 casts in app may fail 445 17
avg var-points-to 15.1 23.0 8.2 8.2 avg var-points-to 212 19.1
avg app v-points-to 15.3 41.7 8.5 8.5 avg app var-points-to 30.7 314
time (sec) 427.4 78.8 114.2 161.1 time (sec) 1215.7 | 2107.6
c-s callgraph edge (K) 966 512 960 2,458 c-s callgraph edge (K) 923 4,399
¢-s var-points-to (K) 49,237 4,029 7,459 9,279 c-s var-points-to (K) 110,113 | 53,552
call-graph edges 47792 -1797 -489 call-graph edges 22251 -1368 -63 -42
reachable meths 6945 -85 -12 reachable meths 4677 -78 -4 -2
reachable v-calls 25220 -404 -18 reachable v-calls 12365 -400 -1 -5
poly v-calls 1406 -82 -85 poly v-calls 435 -66 -12 -26
reach.v-calls in app 13879 -20 0 reach. v-calls in app 1173 -4 0 0
poly v-calls in app 953 -28 -58 poly v-calls in app 29 4 -4 0
= reachable casts 2062 -43 -2 % | reachable casts 761 -38 0 0
% casts that may fail 1546 -45 -120 E casts that may fail 429 -54 -66 -19
reach. casts in app 1346 -2 0 2| reach. casts in app 62 0 0 0
casts in app may fail 1134 13 -70 casts in app may fail 25 3 -18 0
avg var-points-to 32.5 21.8 18.6 avg var-points-to 10.8 7.8 6.4 6.3
avg app var-points-to 42.6 31.9 29.1 avg app var-points-to 59 4.2 29 2.9
time (sec) 2307.2 432.7 2431.0 time (sec) 179.3 67.7 80.8 | 124.3
c-s callgraph edge (K) 1,791 1,036 3,196 c-s callgraph edge (K) 324 473 656 | 1,227
¢-s var-points-to (K) 73,527 | 10,375 43,073 c-s var-points-to (K) 16,968 2,848 3,892 | 5,072
call-graph edges 41628 -2776 -191 -85 call-graph edges 29134 -1720 -52 -80
reachable meths 8339 -133 -27 -8 reachable meths 6080 -86 -5 -8
reachable v-calls 23384 -491 -39 -10 reachable v-calls 15722 -475 -1 -12
poly v-calls 1104 -155 -20 -27 poly v-calls 508 -83 -8 -37
reach. v-calls in app 3641 -30 -29 0 reach. v-calls in app 4436 -84 0 -4
poly v-calls in app 93 -8 -6 0 poly v-calls in app 81 -17 0 -11
+ | reachable casts 1668 -55 -10 0 || | reachable casts 1230 -40 0 0
&| casts that may fail 1023 -39 -199 -46 é casts that may fail 832 -63 -75 -34
©| reach. casts in app 228 -15 -7 0 reach. casts in app 527 -2 0 0
casts in app may fail 115 3 -66 -7 casts in app may fail 431 -12 -26 -15
avg var-points-to 20.1 8.5 6.8 6.7 avg var-points-to 15.8 8.8 7.3 7.3
avg app var-points-to 14.4 4.0 2.8 2.8 avg app var-points-to 26.1 8.9 8.0 8.0
time (sec) 1199.2 143.2 199.0 688.2 time (sec) 293.7 78.2 128.1 | 160.0
c-s callgraph edge (K) 1,087 974 1,252 7,469 c-s callgraph edge (K) 418 527 1,043 | 1,614
c-s var-points-to (K) 83,354 6,572 9,093 | 22,854 c-s var-points-to (K) 24,902 3,370 5,901 | 6,770
call-graph edges 32216 -2575 -86 -42 call-graph edges 35908 -1553 -145
reachable meths 6321 -127 -4 -1 reachable meths 7237 -65 -23
reachable v-calls 17841 -577 -1 -4 reachable v-calls 19828 -355 -36
poly v-calls 752 =77 -24 -26 poly v-calls 1175 -88 -15
reach. v-calls in app 5805 -74 -1 0 reach. v-calls in app 7709 35 -35
poly v-calls in app 243 3 -7 -2 poly v-calls in app 726 -1 -7
9| reachable casts 1228 -51 0 0 c | reachable casts 1264 -34 -4
£| casts that may fail 685 -58 -98 -28 (—‘g casts that may fail 668 21 -149
8| reach. castsin app 471 -8 0 0 *| reach. casts in app 501 4 -4
casts in app may fail 246 -5 -44 -8 casts in app may fail 250 52 -79
avg var-points-to 16.1 11.8 9.1 9.1 avg var-points-to 14.9 12.1 9.6
avg app var-points-to 15.8 13.0 9.5 9.4 avg app var-points-to 15.7 14.4 11.6
time (sec) 826.0 178.0 301.1 480.4 time (sec) 979.9 435.8 831.0
c-s callgraph edge (K) 1,278 1,314 2,241 5,341 c-s callgraph edge (K) 936 2,871 2,580
¢-s var-points-to (K) 64,586 9,232 17,154 | 22,574 c-s var-points-to (K) 96,021 | 21,717 38,205

Figure 8. Precision, performance, and internal complexity metrcgpfecise analyses. The entries are the same as in Figunes@ with
metric names condensed. As in Figure 5, all but the last twoigion metrics are reported affdrences relative to thexmediately preceding
column. Empty entries are due to non-termination after Z$10éirunning time. Some of the most interesting metrics ayklighted.
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