Addiction and Rehabilitation: A Non-monotonic Computational Process

Hava T. Siegelmann, 1* Dino Levy, 2 Yariv Z. Levy 1

¹Laboratory of Biologically Inspired Neural and Dynamical Systems
University of Massachusetts Amherst, Amherst MA 01003, USA
²Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.

*To whom correspondence should be addressed; E-mail: hava@cs.umass.edu.

Supplementary material

In the following we present the mathematical details of calculating G and its parameters. All dynamic equations are chosen to be the simplest ones that agree with the notions and data in the field. First are describe the feedback parameters P, S and D; second the acute parameters A_P , A_S , A_D and Q; and then h, f, r and G.

Let us define the bounding function σ as:

$$\sigma(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \in [0, 1] \\ 1 & \text{if } x > 1 \end{cases}$$

We will note by ν_X the noise for the signal X, for any signal X. In this work all $\nu_X \in [-0.05, 0.05]$.

S - stress

$$S(t) = \begin{cases} \sigma \left(1 - (1 - S_0) \cdot e^{-\beta_S \cdot d} + \nu_S \right) & \text{if } G > 0 \\ \\ \sigma \left(S(t - 1) + \nu_S \right) & \text{if } G = 0 \\ \\ \sigma \left(S_0 \cdot e^{-\gamma_S \cdot d} + \nu_S \right) & \text{if } G < 0 \end{cases}$$

where

 t_c = time of last change of sign of G

 S_0 = value of $S(t_c)$, $S_0 < 1$

 β_S = exponential constant of S when G > 0 (e.g. 10^{-5})

 γ_S = exponential constant of S when G<0 (e.g. $2\cdot 10^{-2})$

d = number of steps after t_c , $d \in \mathbb{N}$ (positive integers)

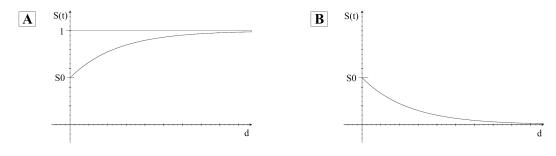


Figure 1: A) S(t) when G > 0, B) S(t) when G < 0.

 $S \in [0, 1]$

 ν_{S} uniform noise $\in [-0.05, 0.05]$

The signal S(t) behaves as follows:

- When G > 0, S(t) increases exponentially from the constant value S_0 to 1 by an increasing factor β_S . The noise ν_S is added, and in order to assure that S(t) is bounded, the function σ is applied.
- When G = 0, the noise ν_S is added and the function σ is applied.
- When G < 0, S(t) decreases exponentially from the constant value S_0 to 0 by a decreasing factor β_S . The noise ν_S is added and the function σ is applied.

P - pain

$$P(t) = \begin{cases} \sigma\left(P_0 \cdot e^{-\beta_P \cdot d} + \nu_P\right) & \text{if } G > 0 \\ \sigma\left(P(t-1) + \nu_P\right) & \text{if } G = 0 \\ \sigma\left(1 - (1 - P_0) \cdot e^{-\gamma_P \cdot d} + \nu_P\right) & \text{if } G < 0 \end{cases}$$

where

 t_c = time of last change of sign of G

$$P_0$$
 = value of $P(t_c)$, $P_0 < 1$

 β_P = exponential constant of P when G > 0 (e.g. $3 \cdot 10^{-5}$)

 γ_P = exponential constant of P when G < 0 (e.g. 10^{-3})

 $d = \text{number of steps after } t_c, d \in \mathbb{N} \text{ (positive integers)}$

$$P \in [0,1]$$

 ν_P uniform noise $\in [-0.05, 0.05]$

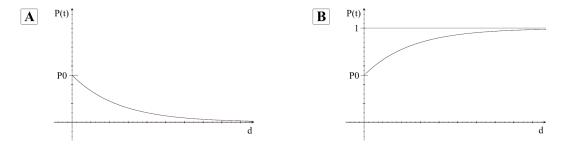


Figure 2: A) S(t) when G > 0, B) S(t) when G < 0.

The signal P(t) behaves as follows:

- When G > 0, P(t) decreases exponentially from the constant value P_0 to 0 by a decreasing factor β_P .
- When G = 0, the noise ν_P is added and σ is applied.
- When G < 0, P increases exponentially from the constant value P_0 to 1 by an increasing factor γ_P .

D - dopamine related craving

$$D(t) = \begin{cases} \sigma\left(1 - (1 - D_0) \cdot e^{-\beta_D \cdot d} + \nu_D\right) & \text{if } G > 0 \text{ and } d \in [1, \tau] \\ \\ \sigma\left(D_0' \cdot e^{-\beta_D \cdot d} + \nu_D\right) & \text{if } G > 0 \text{ and } d > \tau \end{cases}$$

$$\sigma\left(D(t - 1) + \nu_D\right) & \text{if } G = 0$$

$$\sigma\left(1 - (1 - D_0) \cdot e^{-\gamma_D \cdot d} + \nu_D\right) & \text{if } G < 0$$

where

 t_c = time of last change of sign of G

$$D_0$$
 = value of $D(t_c)$, $D_0 < 1$

 τ = number of time steps in which the dopamine related craving increases after there is no drug consumption (e.g. 15)

$$D_0'$$
 = value of $D(t)$ at $t = \tau$

 β_D = exponential constant of D when G > 0 (e.g. $2 \cdot 10^{-2}$)

 γ_D = exponential constant of D when G < 0 (e.g. 10^{-5})

 $d = \text{number of steps after } t_c, d \in \mathbb{N} \text{ (positive integers)}$

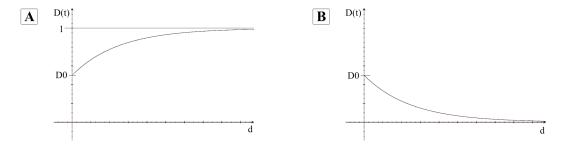


Figure 3: A) D(t) when G < 0 or when G > 0 and $d \in [1, \tau]$, B) D(t) when G > 0 and $d > \tau$.

$$D \in [0, 1]$$

 ν_D uniform noise $\in [-0.05, 0.05]$

The signal D(t) behaves as follows:

- When G > 0, for the first τ time steps, D(t) increases exponentially from the constant value D_0 to 1 by an increasing factor β_D and after that, when $t > \tau$, D(t) decreases exponentially from the constant value D_0 to 0 by a decreasing factor β_D . The noise ν_D is added and D(t) is bounded in [0,1] by applying σ .
- When G = 0, the noise ν_D is added and σ is applied.
- When G < 0, D(t) increases exponentially from the constant value D_0 to 1 by an increasing factor γ_D . The noise ν_D is added and σ is applied.

A_S - acute shock

$$A_S(t) = \begin{cases} A_{S_0} & \text{if } (G>0 \text{ and } b_S(t)=1) \text{ or } t_S \in [1,\tau_1] \\ \\ \rho_S \cdot A_S(t-1) & \text{if } t_S \in [\tau_1,\tau_2] \\ \\ 0 & \text{else} \end{cases}$$

where

 $b_S(t)$ is a Boolean variable $\in \{0,1\}$. $b_S(t) = 1$ means that a shock begins at time t.

 $A_{S_0} = \text{constant (e.g. 0.85)}$

 $\rho_S = \text{constant} < 1 \text{ (e.g. 0.7)}$

 t_0 = starting time of a shock

 t_S = number of steps after $t_0, t_S \in \mathbb{N}$ (positive integers)

 τ_1 = number of time steps in which the shock effect is constant (e.g. 70)

 τ_2 = number of time steps in which the shock effect is decreasing (e.g. 800)

 $\tau_2 > \tau_1$

 $A_S \in [0, A_{S_0}]$

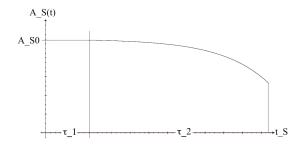


Figure 4: Behavior for $A_S(t)$.

The signal $A_S(t)$ behaves as follows:

• When an acute shock is detected, its value becomes A_{S_0} for the first τ_1 time steps, then for τ_2 steps its value decreases exponentially by a factor ρ_S . After $t = \tau_1 + \tau_2$, $A_S(t)$ becomes 0.

The signals A_S , A_P and A_D are mathematically very similar. The first difference is that an event A_P can starts only when G < 0, but events A_S and A_D can start only when G > 0. The second difference are the constants used in the definition of those signals.

A_P - acute trauma

$$A_P(t) = \begin{cases} A_{P_0} & \text{if } (G < 0 \text{ and } b_P(t) = 1) \text{ or } t_P \in [1, \tau_1] \\ \\ \rho_P \cdot A_P(t-1) & \text{if } t_P \in [\tau_1, \tau_2] \\ \\ 0 & \text{else} \end{cases}$$

where

 $b_P(t)$ is a Boolean variable $\in \{0,1\}$. $b_P(t)=1$ means that a trauma begins at time t.

 A_{P_0} = constant (e.g. 0.7)

 $\rho_P = \text{constant} < 1 \text{ (e.g. 0.9)}$

 t_0 = starting time of a trauma

 t_P = number of steps after $t_0, t_P \in \mathbb{N}$ (positive integers)

 τ_1 = number of time steps in which the trauma effect is constant (e.g. 100)

 τ_2 = number of time steps in which the trauma effect is decreasing (e.g. 1000)

 $\tau_2 > \tau_1$

 $A_P \in [0, A_{P_0}]$

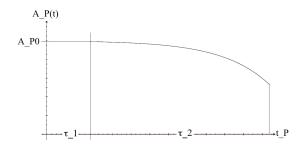


Figure 5: Behavior for $A_P(t)$.

The signal $A_P(t)$ behaves as follows:

• When an acute trauma is detected, its value becomes A_{P_0} for the first τ_1 time steps, then for τ_2 steps its value decreases by a factor ρ_P . At $t = \tau_1 + \tau_2$, $A_P(t)$ becomes 0.

A_D - acute priming to drugs

$$A_D(t) = \left\{ \begin{array}{ll} A_{D_0} & \text{if } (G>0 \text{ and } b_D(t)=1) \text{ or } t_D \in [1,\tau_1] \\ \\ \rho_D \cdot A_D(t-1) & \text{if } t_D \in [\tau_1,\tau_2] \\ \\ 0 & \text{else} \end{array} \right.$$

where

 $b_D(t)$ is a Boolean variable $\in \{0,1\}$. $b_D(t) = 1$ means that a priming effect begins at time t.

 A_{D_0} = constant (e.g. 0.9)

 ρ_D = constant < 1 (e.g. 0.4)

 t_0 = starting time of a shock

 t_D = number of steps after $t_0, t_D \in \mathbb{N}$ (positive integers)

 τ_1 = number of time steps in which the priming effect is constant (e.g. 30)

 τ_2 = number of time steps in which the priming effect is decreasing (e.g. 200)

$$\tau_2 > \tau_1$$

$$A_D \in [0, A_{D_0}]$$

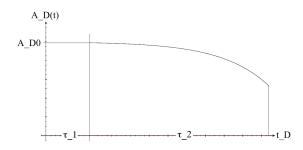


Figure 6: Behavior for $A_D(t)$.

The signal $A_D(t)$ behaves as follows:

• When an acute priming to drugs is detected, its value becomes A_{D_0} for the first τ_1 time steps, then for τ_2 steps its value decreases by a factor ρ_D . At $t = \tau_1 + \tau_2$, $A_D(t)$ becomes 0.

q - saliency to drug cues

$$q(t) = \begin{cases} \sigma\Big(q(t-1) + \nu_q\Big) & \text{if } (G>0 \text{ and } d \in [1,\tau]) \text{ or if } G=0 \\ \\ \sigma\Big(q_0' \cdot e^{-\beta_q \cdot d} + \nu_q\Big) & \text{if } G>0 \text{ and } d>\tau \\ \\ \sigma\Big(1 - (1-q_0) \cdot e^{-\gamma_q \cdot d} + \nu_q\Big) & \text{if } G<0 \end{cases}$$

where

 t_c = time of last change of sign of G

$$q_0$$
 = value of $q(t_c)$, $q_0 < 1$

 τ = number of time steps in which saliency to drug cues saliency does not decrease even that there is no drug consumption (e.g. 20)

 $q_{0}^{'}$ = value of q(t) when $t=\tau$

 β_q = exponential constant of q when G>0 (e.g. 10^{-5})

 γ_q = exponential constant of q when G < 0 (e.g. 10^{-4})

d = number of steps after t_c , $d \in \mathbb{N}$ (positive integers)

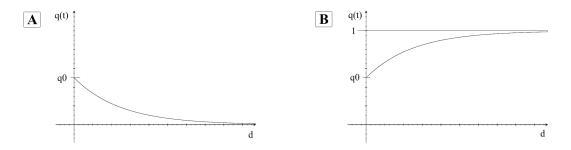


Figure 7: A) q(t) when G = 0 or when G > 0 and $d > \tau$, B) q(t) when G < 0.

 $q \in [0,1]$ $\nu_q \text{ uniform noise} \in [-0.05, 0.05]$

The signal q(t) behaves as follows:

- When G>0, for the first τ time steps, only the noise ν_q is added. After that, when $t>\tau$, q(t) start to exponentially decrease from the constant value q_0' (the value of q when $t=\tau$) to 0 by a decreasing factor β_q .
- When G=0, the noise ν_q is added and σ is applied.
- When G < 0, q increases exponentially from the constant value q_0 to 1 by an increasing factor γ_q . The noise ν_q is added and σ is applied.

${\cal Q}$ - encountering drug cues

$$Q(t) = \begin{cases} q(t) & \text{if } b_Q(t) = 1 \\ Q(t-1) & \text{if } t_Q \in [1, \tau_1] \\ \\ \rho_Q \cdot Q(t-1) & \text{if } t_Q \in [\tau_1, \tau_2] \\ \\ 0 & \text{else} \end{cases}$$

where

 $b_Q(t)$ is a Boolean variable $\in \{0,1\}$. $b_Q(t)=1$ means that a cue begins at time t.

$$\rho_Q = {\rm constant} > 1 \; ({\rm e.g.} \; 1.35)$$

 t_0 = starting time of a cue

 t_Q = number of steps after $t_0, t_Q \in \mathbb{N}$ (positive integers)

 τ_1 = number of time steps in which the cue effect is constant (e.g. 20)

 τ_2 = number of time steps in which the cue effect is decreasing (e.g. 400)

$$\tau_2 > \tau_1$$

$$Q \in [0, \rho_O]$$

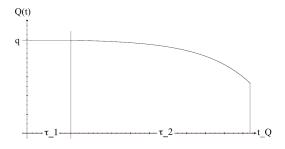


Figure 8: Behavior for Q(t).

The signal Q(t) behaves as follows:

• When first detected, the signal Q(t) becomes the value of q at the same time step t. For the first τ_1 time steps its value remain constant, then for τ_2 steps its value decreases by a factor ρ_Q . At $t = \tau_1 + \tau_2$, Q(t) becomes 0.

h - recovery power

$$h(t) = \left\{ \begin{array}{ll} h_0 & \text{if } b_h(t) = 1 \text{ or } t_h \in [1, \xi(h(t))] \\ \\ 0 & \text{else} \end{array} \right.$$

where $\xi(h(t))$ is the memory of the recovery power, described by:

$$\xi(h(t)) = \begin{cases} \lfloor \xi(h(t-1)) + \Delta_i \rfloor & \text{if } h(t) = h_0 \text{ and } b_h(t) = 1 \\ \\ \xi(h(t-1)) & \text{if } h(t) = h_0 \text{ and } b_h(t) = 0 \\ \\ \max(0, \xi(h(t-1)) - \Delta_d) & \text{if } h(t) = 0 \end{cases}$$

and

 $b_h(t)$ is a Boolean variable $\in \{0,1\}$. $b_h(t)=1$ means that an recovery power begins at time t.

 h_0 = constant (e.g. 0.6)

 $\xi(h(t))$ = number of time steps in which recovery power effect remain active, $\xi(h(t)) \in \mathbb{N}$ (positive integers)

 t_0 = the last recovery power starting time

 t_h = number of steps after t_0 , $t_h \in \mathbb{N}$ (positive integers)

 Δ_i = constant to increase memory of h with every new recovery power event (e.g. 10)

 Δ_d = constant to decrease memory of h when no active recovery power (e.g. 0.5)

At $t = \xi(h(t))$, when the last effect of the recovery power ended, there is a stochastic decision of whether to cause a permanent effect or not.

The effect of h on the key parameter of the cognitive rationality f is described later in this document.

h takes two possible values: $h \in \{0, h_0\}$

The signal h(t) behaves as follows:

• The value of h(t) is the constant h_0 when it is active, within the time intervall since it last encountered as long as the memory is active.

The signal $\xi(h(t))$, representing the memory of the recovery power, behaves as follows:

• If an recovery power event is encountered, then $\xi(h(t))$ increases by the constant Δ_i . $\xi(h(t))$ doesn't change when h is active. When no recovery power is present, the memory $\xi(h(t))$ decreases by the constant Δ_d , without the possibility to reach negative values. The value of $\xi(h(t))$ is rounded to the highest integer not larger than it.

f - the key parameter of the cognitive rationality

$$f(t,h) = \left[\omega_P(h) \cdot P(t) - \omega_S(h) \cdot S(t) - \omega_D(h) \cdot D(t)\right] + \left[\omega_A \cdot \left(A_P(t) - A_S(t) - A_D(t)\right) - \omega_{A_Q} \cdot Q(t)\right] + \omega_h \cdot h(t)$$

where

 $\omega_S(h)$, $\omega_P(h)$ and $\omega_D(h)$ weight the functions S(t), P(t) and D(t) respectively ω_A is the weight of $A_P(t)$, $A_S(t)$ and $A_D(t)$

 ω_{A_Q} is the weight of $A_Q(t)$

 ω_h is the weight of h(t)

The functions $\omega_i(h)$, where $i \in \{S, P, D\}$, are affected by h in a stochastic manner:

$$\omega_i(h) = \begin{cases} \kappa_i + \zeta_i & \text{if } d \in [1, \xi(h(t))] \\ \kappa_i & \text{if } d \notin [1, \xi(h(t))] \end{cases}$$

and

$$\kappa_i = \left\{ \begin{array}{ll} \kappa_i + \zeta_i & \text{if } d = \xi(h(t)) \text{ and } p > \theta_i \\ \\ \kappa_i & \text{else} \end{array} \right.$$

where

 κ_i = weight of *i*, constant (e.g. 0.91)

 ζ_i = effect of h on $\kappa_i(h)$, constant (e.g. 0.03)

 $\zeta_i > 0$ for P

 $\zeta_i < 0 \text{ for } S \text{ and } D$

 θ_i is the probability that the effect of h on $\omega_i(h)$ is permanent.

• The signal f(t, h) is a weighted sum of many biologically relevant signals. The weights of the feedback parameters are affected by the recovery power h and present the fundamental change in the cognitive rationality as a result of the recovery power.

r - cognitive rationality factor

$$r(t) = \frac{1}{2} \left[\tanh(\alpha \cdot r(t-1) + \beta \cdot f(t,h) + \gamma) \right] + \frac{1}{2}$$

where

 $\alpha = constant$

 β = constant

 γ = 0.2449 (to bound r)

 $r \in [0, 1]$

${\cal G}$ - addiction

$$G(t) = (1 - r(t)) \cdot (-C) + r(t) \cdot I$$

where

I = inhibition constant

C =compulsion constant