Supplementary Material: Modeling Addiction in terms of fluctuating neurotransmitters within the reward system

1. General

The bounding function $\sigma(x)$ is defined as follow:

$$\sigma(x) = \begin{cases} 0 + |\epsilon| & \text{if } x < 0 \\ x & \text{if } x \in [0,1] \\ 1 - |\epsilon| & \text{if } x > 1 \end{cases}$$

where ε is a random value, $\in [-0.05, 0.05]$.

Notations Unless otherwise specified, the following holds for the entire document:

d is a time steps counter used by the continuous processes, which resets to 1 at every time t where the value G(t) changes from a state G(t) = 0, < 0, or > 0 to another state t_G is the time when G(t) last changed state

 $\varepsilon_{\rm X}$ is a random value applied to process X, $\varepsilon_{\rm X} \in [-0.05, 0.05]$

 $\tau_{\rm G}$ is a binary variable, defined as:

 $\tau_G = 0$ if maladaptive behavior where never expressed

 $\tau_G = 1$ if maladaptive behavior where already expressed at least once

 ω_X is the weight of the process X, $\omega_X \in [0, 1]$

 M_X is the upper bound asymptote of the process X, $M_X \in [\mu_X, 1] \subseteq [0, 1]$

 μ_X is the lower bound asymptote of the process X, $\mu_X \in [0, MX] \subseteq [0, 1]$

 Π_X is a temporal constant which influences the behavior of the process $X, \in N^+$ β, γ and γ_n are constants $\in \mathbb{R}^+$

 P_X (t) is the uniformly distributed random function of process X, P_X (t) $\in [0, 1]$

 θ_X is the constant probability that the discrete process X occurs at time t, $\theta_X \in [0, 1]$

 d_{Λ} is a time steps counter used by the discrete processes, which resets to 1 when a discrete process is triggered (each discrete process has a distinct counter of this type) δ_X is a constant for the discrete process $X, \in N^+$

 ρ_X is a constant for the discrete process, $\rho_X \in [0, 1]$

 Δ_i and Δ_d are the constant magnitudes of the discrete process's memories increases and decreases, $\{\Delta_i, \Delta_d\} \in N^+$ (different for each process)

	G(t-1) = 0	G(t-1) < 0	G(t-1) > 0	
	$\forall d$	$\forall d$	$d \leq \Pi_X$	$d>\Pi_X$
$DA_b(t)$	\rightarrow	7	<u>`</u>	
$GL_{PFC,b}(t)$	\rightarrow	\searrow	\searrow	\nearrow
$DA_p(t)$	\rightarrow	\searrow	\searrow	7
$GL_{PFCp}(t)$	\rightarrow	\searrow	\searrow	7
$GL_{PFC,c}(t)$	\rightarrow	\searrow	\searrow	7
$GL_{Amg,c}(t)$	\rightarrow	\searrow	\searrow	7
$GL_{HPC,c}(t)$	\rightarrow	\searrow	\searrow	7
$DA_c(t)$	-	\rightarrow	\searrow	\nearrow
$GL_{PFC,ic}(t)$	\rightarrow	\searrow	7	

Table 1: Behaviors of the continuous processes with respect to G(t) and d, when $\tau_G = 1$. The sign \rightarrow stands for constant, and the signs \nearrow and \searrow stand for exponentially increasing and decreasing.

About the continuous processes In Table 1 are summarized the continuous processes with respect to G(t) and the counter d, when $\tau_G = 1$.

The tendency of drug-seeking behavior G(t) is the output of the model, the variable τ_G describe whether the virtual subject already expressed maladaptive behavior, and the counter d is reset to 1 at every time t where the value G(t) changes state, from G(t) = 0, G(t) < 0, or G(t) > 0 to another state.

When $\tau_G = 0$ these processes stay constant over time (\rightarrow).

About the discrete processes The following list describe when these processes can be triggered:

- Λ_{DP} can be triggered at time t if $\tau_G = 1$, $G(t-1) \ge 0$, and $P_{DP} \le \theta_{DP}$ This process influences $DA_p(t)$ and $GL_{PFC,p}(t)$
- Λ_{DC} can be triggered at time t if $\tau_G = 1$, and $P_{DC} \leq \theta_{DC}$ This process influences $GL_{PFC,c}(t)$, $GL_{Amg,c}(t)$, $GL_{HPC,c}(t)$, and $DA_c(t)$
- Λ_S can be triggered at time t if $\tau_G = 1$, $G(t-1) \ge 0$, and $P_S \le \theta_S$ This process influences $DA_p(t)$ and $GL_{PFC,p}(t)$
- Λ_R can be triggered at time t if $\tau_G = 1$, $G(t-1) \le 0$, and $P_R \le \theta_R$ This process influences $GL_{PFC,ic}(t)$

2. Continuous processes

$2.1 \ DA_b$ - Basal Extracellular DA from the VTA

$$DA_{b}(t) \equiv X(t) = \begin{cases} \sigma \left[X(t-1) + \epsilon_{X} \right] & \text{if } \tau_{G} = 0 \\ \text{or } \tau_{G} = 1 \text{ and } G(t-1) = 0 \end{cases}$$
$$\sigma \left[\left[X(t_{G}) - \mu_{X} \right] \cdot e^{-\gamma \cdot d} + \mu_{X} + \epsilon_{X} \right] & \text{if } \tau_{G} = 1 \text{ and } G(t-1) < 0 \\ \sigma \left[X(t_{G}) \cdot e^{\beta \cdot d} + \epsilon_{X} \right] & \text{if } \tau_{G} = 1 \text{ and } G(t-1) > 0 \end{cases}$$

2.2 $GL_{\mbox{\scriptsize PFC},b}$ - Basal Extracellular Glutamate from the $\mbox{\scriptsize PFC}$

$$GL_{PFC,b}(t) \equiv X(t) = \begin{cases} \sigma \begin{bmatrix} X(t-1) + \epsilon_X \end{bmatrix} & \text{if } \tau_G = 0 \\ \text{or } \tau_G = 1 \text{ and } G(t-1) = 0 \end{cases}$$

$$G\left[\begin{bmatrix} X(t_G) - \mu_X \end{bmatrix} \cdot e^{-\gamma_n \cdot d} + \mu_X + \epsilon_X \end{bmatrix} & \text{if } \tau_G = 1 \text{ and} \\ \text{with} \gamma_n = \gamma_1 & G(t-1) < 0 \\ \text{with} \gamma_n = \gamma_2 & G(t-1) > 0 \text{ and } d \le \Pi_X \end{cases}$$

$$\sigma \begin{bmatrix} X(t_G) \cdot e^{\beta \cdot d} + \epsilon_X \end{bmatrix} & \text{if } \tau_G = 1 \\ \text{and } G(t-1) > 0 \text{ and } d > \Pi_X \end{cases}$$

$2.3\ DA_p$ - Drug-Induced DA from the VTA

$$DA_{p}(t) = X(t) = \begin{cases} \sigma \begin{bmatrix} X(t-1) + \epsilon_{X} \end{bmatrix} & \text{if } \tau_{G} = 0 \\ \text{or } \tau_{G} = 1 \text{ and } G(t-1) = 0 \end{cases}$$

$$DA_{p}(t) = X(t) = \begin{cases} \sigma \begin{bmatrix} M_{X} - [M_{X} - X(t_{G})] \cdot e^{-\gamma_{n} \cdot d} + \epsilon_{X} \end{bmatrix} & \text{if } \tau_{G} = 1 \text{ and} \\ \text{with} \gamma_{n} = \gamma_{1} & G(t-1) < 0 \\ \text{with} \gamma_{n} = \gamma_{2} & G(t-1) > 0 \text{ and } d \le \Pi_{X} \end{cases}$$

$$\sigma \begin{bmatrix} M_{X} - [M_{X} - X(t_{G} + \Pi_{X})] \cdot e^{\beta \cdot d} + \epsilon_{X} \end{bmatrix} & \text{if } \tau_{G} = 1 \\ \text{and } G(t-1) > 0 \text{ and } d > \Pi_{X} \end{cases}$$

2.4 $GL_{PFC,p}$ - Drug-Induced Glutamate from the PFC

$$GL_{PFC,p}(t) \equiv X(t) = \begin{cases} \sigma \begin{bmatrix} X(t-1) + \epsilon_X \end{bmatrix} & \text{if } \tau_G = 0 \\ \text{or } \tau_G = 1 \text{ and } G(t-1) = 0 \end{cases}$$

$$G\left[M_X - \begin{bmatrix} M_X - X(t_G) \end{bmatrix} \cdot e^{-\gamma_n \cdot d} + \epsilon_X \end{bmatrix} & \text{if } \tau_G = 1 \text{ and} \\ \text{with} \gamma_n = \gamma_1 & G(t-1) < 0 \\ \text{with} \gamma_n = \gamma_2 & G(t-1) > 0 \text{ and } d \le \Pi_X \end{cases}$$

$$\sigma \begin{bmatrix} M_X - \begin{bmatrix} M_X - X(t_G + \Pi_X) \end{bmatrix} \cdot e^{\beta \cdot d} + \epsilon_X \end{bmatrix} & \text{if } \tau_G = 1 \\ \text{and } G(t-1) > 0 \text{ and } d > \Pi_X \end{cases}$$

2.5 GL_{N,c} - Saliency of Drug-Associated Cues (Glutamate) GL_{N,c} = $\{GL_{PFC,c}, GL_{Amg,c}, GL_{HPC,c}\}$

$$GL_{N,c}(t) = X(t) = \begin{cases} \sigma \Big[X(t-1) + \epsilon_X \Big] & \text{if } \tau_G = 0 \\ \text{or } \tau_G = 1 \text{ and } G(t-1) = 0 \end{cases}$$

$$GL_{N,c}(t) = X(t) = \begin{cases} \sigma \Big[M_X - [M_X - X(t_G)] \cdot e^{-\gamma_n \cdot d} + \epsilon_X \Big] & \text{if } \tau_G = 1 \text{ and} \\ \text{with} \gamma_n = \gamma_1 & G(t-1) < 0 \\ \text{with} \gamma_n = \gamma_2 & G(t-1) > 0 \text{ and } d \le \Pi_X \end{cases}$$

$$\sigma \Big[M_X - [M_X - X(t_G + \Pi_X)] \cdot e^{\beta \cdot d} + \epsilon_X \Big] & \text{if } \tau_G = 1 \\ \text{and } G(t-1) > 0 \text{ and } d > \Pi_X \end{cases}$$

2.6 DAc - Saliency of Drug-Associated Cues (Dopamine)

$$DA_{c}(t) = X(t) = \begin{cases} \sigma \begin{bmatrix} X(t-1) + \epsilon_{X} \end{bmatrix} & \text{if } \tau_{G} = 0 \\ \text{or } \tau_{G} = 1 \text{ and } G(t-1) \le 0 \end{cases}$$
$$\int \begin{bmatrix} M_{X} - [M_{X} - X(t_{G})] \cdot e^{-\gamma \cdot d} + \epsilon_{X} \end{bmatrix} & \text{if } \tau_{G} = 1 \\ \text{and } G(t-1) > 0 \text{ and } d \le \Pi_{X} \end{cases}$$
$$\cdot \sigma \begin{bmatrix} M_{X} - [M_{X} - X(t_{G} + \Pi_{X})] \cdot e^{\beta \cdot d} + \epsilon_{X} \end{bmatrix} & \text{if } \tau_{G} = 1 \\ \text{and } G(t-1) > 0 \text{ and } d \ge \Pi_{X} \end{cases}$$

2.7 GL_{PFC,ic} - Harmful Consequences of Drug Consumption

$$GL_{PFC,ic}(t) \equiv X(t) = \begin{cases} \sigma \left[X(t-1) + \epsilon_X \right] & \text{if } \tau_G = 0 \\ \text{or } \tau_G = 1 \text{ and } G(t-1) = 0 \end{cases}$$
$$\sigma \left[M_X - [M_X - X(t_G)] \cdot e^{-\gamma \cdot d} + \epsilon_X \right] & \text{if } \tau_G = 1 \text{ and } G(t-1) < 0 \\ \sigma \left[M_X - [M_X - X(t_G)] \cdot e^{\beta \cdot d} + \epsilon_X \right] & \text{if } \tau_G = 1 \text{ and } G(t-1) > 0 \end{cases}$$

3. Discrete processes

3.1 Λ_X - General definition

$$\Lambda_{X}(t) = \begin{cases} 1 & \text{if } (*) \text{ or } d_{\Lambda}]1, \delta_{X}] \\ \max(0, \rho_{X} \cdot \Lambda_{X}(t-1)) & \text{if } d_{\Lambda}]\delta_{X}, \pi_{X}(t)] \\ 0 & \text{otherwise} \end{cases}$$

where

$$\pi_{X}(t) = \begin{cases} \pi_{X}(t-1) + \Delta_{i} & \text{if } (*) \\ \\ \max(0, \pi_{X}(t-1) - \Delta_{d}) & \text{otherwise} \end{cases}$$

where (*) is the activation condition of the discrete process, as described below.

3.1.1 Λ_{DP} - Drug Priming (*) stands for: $\tau_G = 1$ and $G(t-1) \ge 0$ and $P_{DP}(t) \le \theta_{DP}$

3.1.2 Λ_{DC} - Drug-associated Cues (*) stands for: $\tau_G = 1$ and $P_{DC}(t) \le \theta_{DC}$

3.1.3 Λ_s - Stress (*) stands for: $\tau_G = 1$ and $G(t-1) \ge 0$ and $P_s(t) \le \theta_s$

3.1.4 Λ_R - *Recovery* (*) stands for: $\tau_G = 1$ and $G(t-1) \leq 0$ and $P_R(t) \leq \theta_R$

4. Processes integration and output of the model

4.1 n - Input to the behavioral process

$$n(t) = \begin{cases} DA_{b}^{\omega}(t) + GL_{PFC,b}^{\omega}(t) - \widetilde{DA}_{p}(t) - & \text{if mod}(t-1,24) = 0 \\ \\ \widetilde{GL}_{PFC,p}(t) - \widetilde{GL}_{PFC,c}(t) - \widetilde{GL}_{Amg,c}(t) - & \text{or } \Lambda_{DP}(t) \neq 0 \text{ or } \Lambda_{DC}(t) \neq 0 \\ \\ \\ \widetilde{GL}_{HPC,c}(t) - \widetilde{DA}_{c}(t) + \widetilde{GL}_{PFC,ic}(t) & \text{or } \Lambda_{S}(t) \neq 0 \text{ or } \Lambda_{R}(t) \neq 0 \\ \\ \\ n(t-1) & \text{otherwise} \end{cases}$$

where

$$DA_{b}^{\omega}(t) = \omega_{X} \cdot DA_{b}(t)$$

$$GL_{PFC,b}^{\omega}(t) = \omega_{X} \cdot GL_{PFC,b}(t)$$

$$\widetilde{DA_{p}}(t) = \omega_{X} \cdot DA_{p}(t) + \omega_{DP1} \cdot \Lambda_{DP}(t) + \omega_{S1} \cdot \Lambda_{S}(t)$$

$$\widetilde{GL_{PFC,p}}(t) = GL_{PFC,p}(t) + \omega_{DP2} \cdot \Lambda_{DP}(t) + \omega_{S2} \cdot \Lambda_{S}(t)$$

$$\widetilde{GL_{N,c}}(t) = GL_{N,c}(t) + \omega_{DCn} \cdot \Lambda_{DC}(t)$$

$$\widetilde{DA_{c}}(t) = DA_{c}(t) + \omega_{DC4} \cdot \Lambda_{DC}(t)$$

$$\widetilde{GL_{PFC,ic}}(t) = GL_{PFC,ic}(t) + \omega_{R} \cdot \Lambda_{R}(t)$$

with $\omega_{DCn} = \{\omega_{DC1}, \omega_{DC2}, \omega_{DC3}\}$ for respectively $GL_{PFC,c}$, $GL_{Amg,c}$, and $GL_{HPC,c}$. and

At the last active step of the acute processes Λ_{DP} and Λ_S (means at $d_{\Lambda}=\pi_X(t)$, with $X=\{DP,S\}$) the value of $DA_p(t)$ is updated.

4.2 [output] G - Tendency of drug-seeking behavior

$$G(t) = \begin{cases} \tanh(\alpha \cdot G(t-1) + \beta \cdot n(t) - \gamma) & \text{if mod}(t-1,24) = 0 \text{ or } \Lambda_{\text{DP}}(t) \neq 0 \\ & \text{or } \Lambda_{\text{DC}}(t) \neq 0 \text{ or } \Lambda_{\text{S}}(t) \neq 0 \text{ or } \Lambda_{\text{R}}(t) \neq 0 \end{cases}$$

where

α, β ∈ [0, 1] γ is a constant: $γ = \frac{1}{2}α - \frac{11}{2}β$ G(t) ∈ [-1, 1]