
A Framework for Safely Publishing Communication Traces

Abhinav Parate and Gerome Miklau
University of Massachusetts, Amherst

Department of Computer Science
140 Governors Drive, Amherst, MA

aparate@cs.umass.edu, miklau@cs.umass.edu

ABSTRACT
A communication trace is a detailed record of the com-
munication between two entities. Communication traces
are vital for research in computer networks and study of
network protocols in various domains, but their release is
severely constrained by privacy and security concerns. In
this paper, we propose a framework in which a trace owner
can match an anonymizing transformation with the require-
ments of analysts. The trace owner can release multiple
transformed traces, each customized to an analyst’s needs,
or a single transformation satisfying all requirements. The
framework enables formal reasoning about anonymization
policies, for example to verify that a given trace has utility
for the analyst, or to obtain the most secure anonymization
for the desired level of utility. Because communication traces
are typically very large, we also provide techniques that al-
low efficient application of transformations using relational
database systems.

Categories and Subject Descriptors: H.2.m [Database
Management]:Miscellaneous; K.4.1 [Computers and Society]:
Public Policy Issues - Privacy

General Terms: Security, Design, Performance.

1. INTRODUCTION
A communication trace is a detailed record of the commu-

nication between two entities. Communication traces arise
in a variety of settings and include network traces, phone
toll records, instant-messaging transcripts, among others.
Each record in a communication trace typically identifies a
source and a destination, along with descriptive fields such
as time stamp, transmitted content, length of transmission,
and communication ports.

Communication traces are vital to research into traffic
analysis, communication protocols, routing in networks, and
security of communication networks. Unfortunately the pub-
lic release of communication traces remains highly constrained
by privacy and security concerns and the lack of available

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

traces is a serious concern for researchers [4, 13].
The safe release of communication traces is a significant

challenge. First, communication traces are transactional in
nature, with information about entities spread across multi-
ple records, and correlations between records. Conventional
k-anonymization [12, 14] and its extensions for transactional
data [15] are focused on conceptions of utility that are in-
appropriate and insufficient for communication traces. The
second challenge to protecting communication traces is their
massive size. Many proposed anonymization schemes sim-
ply cannot scale to such large data sets.

Our approach In this work we propose an approach
to communication trace publication emphasizing utility and
scalability. We address the problem faced by a trace owner
who wishes to allow a group of independent analysts to safely
study a communication trace.

The first component of our approach is a set of simple,
formally-defined transformation operators that are applied
to the trace to remove or obscure information. These trans-
formation operators can be combined to form composite
transformations that can be applied to publish output traces,
and can be thought of as a safe view of the original trace.

Unlike most approaches to trace anonymization (in which
the trace owner generates a single anonymized trace) we
provide a framework for the trace owner to anonymize a
trace for the needs of a particular analysis, releasing mul-
tiple traces. The published traces can be more secure be-
cause they provide only the needed information, omitting
everything else. Our publication framework is illustrated
informally in Figure 1. The figure shows an original trace
T transformed in four different ways, for use by different
analysts. Trace T1 contains sufficient information for both
analysts A and B. Trace T2 is devised for use exclusively
by the analyst C, and trace T3 is customized for the needs
of analyst D. An alternative to publishing both trace T2

and T3 is to derive the single trace T23 which can support
analysts C and D simultaneously.

The second component of our approach is input from the
analyst. We assume the requesting trace analyst provides
a description of the information needed for analysis. We
propose a simple language for utility constraints which ex-
press the need for certain relationships to hold between the
original trace and the published trace.

The third component of our approach is the formal eval-
uation of privacy and utility. Because both the transfor-
mations and the utility requirements of analysts are spec-
ified formally, it is possible for the trace owner to analyze
trace publication scenarios precisely. In particular, the trace

T

Analyst A
T1

T2

T3

Analyst B

Analyst C

Analyst D

Original Trace Transformed Traces Analysts

T23

Req
A

Req
B

Req
C

Req
D

Figure 1: The proposed trace protection framework:
the original trace T may be transformed in multiple
ways (T1, T2, T3, T23) to support the requirements of
different analysts.

owner can: (1) decide whether a composite trace transfor-
mation satisfies an analyst’s requirements and guarantees
perfect utility; (2) compute the most secure transform sat-
isfying a given set of analyst requirements; (3) compare the
security and collusion risks of various transforms that can
meet requirements of all the analysts.

The result of our contributions is a framework in which
basic trace transformation operations can be applied effi-
ciently, and with a precise, formal understanding of their
impact on trace utility and privacy. In the remainder of
the paper, we describe components of our framework (Sec-
tion 2), the formal analysis supported by framework (Sec-
tion 3), the efficient implementation of the system (Section
4) and the related work (Section 5).

2. TRANSFORMATION FRAMEWORK
In this section we describe the two main objects of our

framework: operators, used by the trace owner to define
trace transformations, and constraints, used by analysts to
express utility requirements.

2.1 Trace transformation operators
The following transformation operators are applied to a

trace in order to obscure, remove, or translate field values,
making it more difficult for an adversary to attack, but also
less useful for analysts. The trace owner may combine in-
dividual operators to form composite transformations, bal-
ancing utility and security considerations. The output of a
composite transformation is released to the analyst.

Operator descriptions
We consider a communication trace as a table consisting of
records. Each record consists of fixed number of fields.

Projection The projection is the simplest operator which
is similar to relational projection operator but it retains the
duplicates. It is denoted ΠX for retained attributes in X.

Encryption The encryption operator is denoted EX(Y),κ

where X is a set of target fields whose values are replaced
by ciphertext obtained by applying symmetric encryption
function on string formed by concatenating values from X
and Y , using κ as the key. The values of Y are not affected.

Canonical Ordering The canonical ordering operator re-
places the values in fields by synthetic values that respect
the ordering of the original values. The ordering operator
is denoted OX(Y) where X is the set of target fields to be
replaced. The optional set Y is used to form the groups
agreeing on values in Y . The replaced values of X respects

the ordering only within the group.

Translation The translation operator, denoted TX(Y) trans-
lates the values in columns of X by adding or subtracting a
parameter whose value is determined using a function tak-
ing values in Y as input. If the Y is empty set, all records
are translated by some constant c.

Scaling The scaling operator is denoted SX,k and it scales
the values in target fields X by multiplying with a constant
multiplier k.

It is sometimes convenient to consider the identity trans-
formation, denoted IX , which does not transform field X,
including it in the output without modification.

Composite Transformations
The operators above can be combined to form composite
transformations for a trace. We assume in the sequel that
composite transformations φ are represented in the following
normal form:

φ = ΠX ◦ φ1
X1 ◦ φ

2
X2 ◦ ... ◦ φ

n
Xn

(1)

where φiXi
refers to (i + 1)th operator in φ which acts on

attribute set Xi and for all i, φiXi
∈ {E, T,O, S, I}. We

denote the set of all such transformations Φ. The last op-
eration applied to the trace is the projection ΠX . Any op-
erator acting on fields not present in X will be disregarded.
Further we restrict our attention to composite operations in
which each field in the trace is affected only by one opera-
tion: ∀i, j,Xi ∩Xj = {}.

Other operators.
We have found that the above simple set of operators can

be used to generate safe transformations supporting a wide
range of analyses. However, addition of additional operators
to our framework is easy and requires only minor extensions
to support other features of the framework.

2.2 Specifying Utility Requirements
In our framework, the analyst seeking access to a trace

must specify their utility requirements formally. These re-
quirements are expressed as a set of constraints asserting a
given relationship between fields in the original trace and
fields in the anonymized trace. The syntax of notation for
the constraint is as follows:

〈qualifier〉 ⇒ (expr(orig) = expr(anon))

where ′expr′ can be any acceptable arithmetic expression
obtained using operators (+,−, /, ∗) or it can be any boolean
expression obtained using operators (&&, ||,≤,≥,==, ! =)
on fields in the trace.

The above constraint means that if there are one or more
records in a trace that satisfy the boolean qualifying condi-
tions given in 〈qualifier〉, then the value of expression expr
evaluated over these records must be equal to the value of
same expression when evaluated over corresponding anonymized
records.

We believe trace analysts will be able to use these con-
straint rules to accurately describe the properties of a trace
required for accurate analysis. The analyst could be as-
sisted in this task by a GUI or semi-automated procedures,
but this is beyond the scope of the current work.

As an example, in Table 1, we semi-formally describe the
requirements as a set of constraints for a real study[6] from

Table 1: A semi-formal description of utility requirements
sufficient to support the example TCP/IP network analysis.

Semi-Formal Utility Requirements

Any tuple t Any tuples t1, t2 belonging to
in trace same connection in trace
PRESERVE(t.syn) PRESERVE(t1.seq no ≤ t2.seq no)
PRESERVE(t.ack) PRESERVE(t1.seq no− t2.seq no)
PRESERVE(t.window) PRESERVE(t1.ts ≤ t2.ts)

PRESERVE(t1.ts− t2.ts)
PRESERVE(t1.seq no == t2.ack no)

where PRESERVE(expr) ≡ exprT = exprφ(T)

i.e. value of expr evaluated over tuples in trace T must be equal
to value when expr is evaluated over transformed tuples in φ(T)

the area of network research. This study focuses on esti-
mating the round trip time of a network packet using IP-
level packet network traces (see Table 2(a) for illustration).
An anonymization scheme to support this study can be ex-
pressed as a composite transformation function φ given by:

φ = ΠX ◦ E{ip1,ip2},κ1 ◦ E{pt1,pt2}(ip1,ip2),κ2 ◦ T{ts}(C)

◦T{seq no,ack no}(C) ◦ I{dir,window,syn,ack}
Here C = {ip1, ip2, pt1, pt2}. The records in the sample
trace given in Table 2(a) are transformed using the above
transformation function φ, to obtain the anonymized view
given in Table 2(b). The encrypted values have been re-
placed by variables for clarity.

3. ANALYSIS OF TRANSFORMATIONS
In this section, we briefly describe the important feature of

the framework which allows the trace owner to reason for-
mally about the anonymizing transformations and utility.
In addition, it allows formal comparison of transformations
and has its implications in computing most secure trans-
formation, comparing alternative publication strategies and
analyzing the impact of collusion.

3.1 Utility verification of a transformation
In our framework, it is possible to test efficiently whether

a given transformation φ will always satisfy the utility re-
quirements expressed by a set of constraints C. Checking
utility constraint satisfaction is performed independently for
each constraint rule in C by matching the conditions speci-
fied in a constraint to the operators that impact the named
fields. Recall that the constraint has an expression expr
where it can be conjunctive normal form of one or more
sub-expressions, or an arithmetic expression. In our frame-
work, we maintain a look-up table consisting of possible sub-
expressions along with the satisfying transformations and
conditions. For each sub-expression in a constraint, we look
for the corresponding entry in look-up table. If the compos-
ite transform function φ has a matching transformation in
the table for each of the sub-expression, then the constraint
is said to be satisfied by the transformation. The details of
this process and can be found in our technical report [11].

3.2 A partial order for transformations
Since each transformation operator removes information

from the trace, some composite transformations can be com-
pared with one another in terms of the amount of informa-
tion they preserve. It can be shown that there is a natural
partial order (denoted �) on transformations. Given two

transformations φ1 and φ2, we say that φ1 is more strict
than φ2 or φ1 ≺ φ2 if the information preserved by φ1 is
contained within the information preserved by φ2.

The precise definition of strictness relation and the rela-
tions for basic operators are given in our report [11].

Recall that Φ denotes the set of all composite transforma-
tions. Then the following theorem show that the strictness
relation has a number of convenient properties.

Theorem 1. (Φ,�) is a partially ordered set and forms a
join-semilattice i.e. for any two transformations φ1 and φ2,
there is another transformation in Φ, denoted lub(φ1, φ2),
which is the least upper bound of φ1 and φ2.

Theorem 1 can be easily extended to conclude that any
set of transforms has a unique least upper bound and this
fact has a number of important consequences for the trace
publisher:

– First, given a set of constraints C it is important for
the trace publisher to compute the most secure trans-
formation satisfying C. Theorem 1 shows that such a
transformation always exists. The algorithm for com-
puting this transformation is given in our report [11].

– Next, imagine that the trace publisher has derived
three transforms φ1, φ2, φ3 specific to three analyst re-
quests. The publisher may wish to consider publish-
ing a single trace that can satisfy all three requests
simultaneously. The least upper bound of these three
transformations, denoted lub(φ1, φ2, φ3) is the trans-
formation with least information sufficient for all three
analysts.

– Similarly, if the publisher has already released the traces
derived from φ1, φ2, φ3 and fears that the analysts may
collude, then the least upper bound transformation
lub(φ1, φ2, φ3) is a conservative bound on the amount
of information the colluding parties could recover by
working together. The details of accurate quantitative
analysis of collusion are given in our report [11].

4. SYSTEM IMPLEMENTATION
Our system allows the trace owner to efficiently transform

large traces in response to multiple requests from analysts.
We use a relational database to store the original trace and
to apply transformations, creating new traces to be released
to users.

In this system, the transformation operators from (Π, E,
T, S, I), can be applied in a single scan of the trace using
SQL queries with user-defined functions (UDFs). The op-
erators E, T, S, can be implemented efficiently using UDFs,
and add only modest CPU overhead. The operators I and
Π are implemented using costless projection.

On the other hand, the canonical ordering operator OX(Y)

can be applied using the DENSE RANK() function which
was added to the SQL:2003 standard. This function com-
putes the rank of the tuples in a relation based on the rank
criteria provided in assisting clause. The operation OX(Y)

can be done using following clause: DENSE RANK OVER
(PARTITION BY Y ORDER BY X). Unlike scalar UDFs,
this function requires sorting of the base relation. Thus, the
cost of transformation increases linearly with the number of
O-operators due to multiple scans of the trace.

Table 2: (a) Example of IP-level trace (b) Trace transformed under φ as described in Section 2
(a)

Table 2: Original Connection Tuples

ts ver ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

30 4 172.31.1.34 172.31.2.212 22 22 → 5000 7280 8760 0 1
31 4 172.31.1.34 172.31.2.212 22 22 → 5012 7280 8760 0 1
32 4 172.31.1.34 172.31.2.212 22 22 ← 7280 5024 65110 0 1
32 4 172.31.1.34 172.31.2.212 22 22 → 5024 7280 8760 0 1
31 4 172.31.1.34 172.31.2.212 80 9080 → 4780 8214 6432 0 1
30 4 172.31.1.34 172.31.2.89 80 9080 → 1000 1280 17424 0 1
31 4 172.31.1.34 172.31.2.89 80 9080 → 1012 1280 17424 0 1
32 4 172.31.1.34 172.31.2.89 80 9080 → 1024 1280 17424 0 1

Table 3: Transformed Tuples

ts ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

0 c1 p1 → 0 2280 8760 0 1
1 c1 p1 → 12 2280 8760 0 1
2 c1 p1 ← 2280 24 65110 0 1
2 c1 p1 → 24 2280 8760 0 1
0 c1 p′1 → 0 3434 6432 0 1
0 c2 p2 → 0 280 17424 0 1
1 c2 p2 → 12 280 17424 0 1
2 c2 p2 → 24 280 17424 0 1

fields to be encrypted, Y is an optional set of grouping attributes
for encryption, and κ is a secret encryption key.

The encryption operation is applied as follows. For each record
in the trace, the values of attributes from set X are concatenated
with the values of attributes from set Y to form a string. The string
is appropriately padded and then encrypted under a symmetric en-
cryption algorithm using κ as the key. The ciphertext output re-
places the fields of X in the output trace; the values for attributes
in Y are not affected.

The encryption key is never shared, so the output trace must be
analyzed without access to the values in these fields. A different
encryption key is used for each encryption operator applied, but the
same encryption key is used for all values of the fields in X . Thus,
common values in an encrypted field are revealed to the analyst.
However, if two records agree upon values in X but differ in values
in Y , then the encrypted values of X will be different for these
records. As a result, the encryption of two records will be same
only if they agree upon values for X as well as for Y .

Table 2b shows the result of applying encryption operators E{ip1,ip2},κ

and E{pt1,pt2}(ip1,ip2),κ to Table 2a. The encryption allows con-
nections (identified by source and destination IP, port fields) to be
differentiated. However, it is not possible see that two connec-
tions share the same destination port, for example. Further, because
source and destination IP are used as input for encryption of ports,
it is not possible to correlate ports across different connections.
Canonical Ordering The canonical ordering operator is used to
replace fields whose actual values can be eliminated as long as they
are replaced by synthetic values respecting the ordering of the orig-
inal values. The ordering operator is denoted OX(Y) where X is
the set of target fields to be replaced, and Y is an optional set of
grouping fields. If the input set Y is empty, the data entries in
fields of X are sorted and replaced by their order in the sorted list,
beginning with one. If the input set Y is not empty, then the or-
dering operation is done separately for each group of records that
agree on values for the columns in Y .
Translation The translation operation is applied to numerical
fields in the trace, shifting values through addition or subtraction
of a given constant. The operator is denoted TX(Y) where X is a
set of target columns that are translated by the operator. The oper-

ator can optionally have another set of columns Y called grouping
columns, which are not affected by the operation.

If the input set Y is empty, all the data-entries in target columns
in X are shifted by a parameter c. The shift is caused by subtract-
ing a random parameter c from each entry in the columns. If the
input set Y is not empty, then all the records in a trace are formed
into groups such that the records in each group have the same data
for columns in Y . For records in each group, the target columns
X are shifted by a parameter c where the value of the parameter is
dependent on the group. The parameter value can be chosen ran-
domly or by using a function that takes the data-entry of Y for the
group as input.
Scaling The scaling operation scales all the values in a given field
by multiplying it with a constant multiplier. The scaling operator is
denoted SX,k for a set of target fields X . The scaling operator acts
scales all the values in fields in X by a factor of k.

It is sometimes convenient to consider the identity transforma-
tion, denoted IX , which does not transform field X , including it in
the output without modification.

Composite Transformations
The operators above can be combined to form composite transfor-
mations for a trace. We assume in the sequel that composite trans-
formations φ are represented in the following normal form:

φ = ΠX ◦ φ1
X1 ◦ φ2

X2 ◦ ... ◦ φn
Xn

(1)

where φi
Xi

refers to (i + 1)th operator in φ which acts on attribute
set Xi and for all i, φi

Xi
∈ {E, T, O, S, I}. We denote the set of

all such transformations Φ. The last operation applied to the trace is
the projection ΠX . Any operator acting on fields not present in X
will be disregarded. Further we restrict our attention to composite
operations in which each field in the trace is affected only by one
operation: ∀i, j, Xi ∩Xj = {}. In the paper, we will assume ΠX

to be present even if not mentioned in φ. For example, EX1 ◦ TX2

and ΠX1∪X2 ◦ EX1 ◦ TX2 will be the same.

Other operators.
Our framework can easily accommodate other transformation

operators. We have found that this simple set of operators can be

4

(b)

Table 1: A formal description of utility requirements sufficient to support the example analysis of TCP connection properties.

Formal Utility Requirements
Any(t)⇒ t.syn = φ(t).syn
Any(t)⇒ t.ack = φ(t).ack
Any(t1, t2)⇒ ((t1.ip1== t2.ip1) && (t1.ip2 ==t2.ip2) && (t1.pt1== t2.pt1)&& (t1.pt2 ==t2.pt2)) =
(φ(t1).ip1== φ(t2).ip1 && φ(t1).ip2 ==φ(t2).ip2 && φ(t1).pt1== φ(t2).pt1 && φ(t1).pt2 ==φ(t2).pt2)
Same-Conn(t1,t2)⇒ (t1.seq_no ≤ t2.seq_no) = (φ(t1).seq_no ≤ φ(t2).seq_no)
Same-Conn(t1,t2)⇒ (t1.ts ≤ t2.ts) = (φ(t1).ts ≤ φ(t2).ts)
Same-Conn(t1,t2)⇒ (t1.seq_no− t2.seq_no) = (φ(t1).seq_no− φ(t2).seq_no)
Same-Conn(t1,t2)⇒ (t1.ts− t2.ts) = (φ(t1).ts− φ(t2).ts)
Opp-Pckts(t1,t2)⇒ (t1.seq_no == t2.ack_no) = (φ(t1).seq_no = φ(t2).ack_no)
Any(t)⇒ t.window = φ(t).window
Any(t)⇒ t.dir = φ(t).dir

Qualifiers
Any(t) { }
Any(t1, t2) { }
Same-Conn(t1,t2){(t1.ip1 == t2.ip1) , (t1.ip2 == t2.ip2) , (t1.pt1 == t2.pt1) , (t1.pt2 == t2.pt2)}
Opp-Pckts(t1,t2) {(t1.ip1 == t2.ip1), (t1.ip2 == t2.ip2), (t1.pt1 == t2.pt1), (t1.pt2 == t2.pt2), (t1.dir! = t2.dir)}

Table 2: Original Connection Tuples

ts ver ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

30 4 172.31.1.34 172.31.2.212 22 22 → 5000 7280 8760 0 1
30 4 172.31.1.34 172.31.2.89 80 9080 → 1000 1280 17424 0 1
31 4 172.31.1.34 172.31.2.212 80 9080 → 4780 8214 6432 0 1
31 4 172.31.1.34 172.31.2.212 22 22 → 5012 7280 8760 0 1
31 4 172.31.1.34 172.31.2.89 80 9080 → 1012 1280 17424 0 1
32 4 172.31.1.34 172.31.2.212 22 22 ← 7280 5024 65110 0 1
32 4 172.31.1.34 172.31.2.212 22 22 → 5024 7280 8760 0 1
32 4 172.31.1.34 172.31.2.89 80 9080 → 1024 1280 17424 0 1

Table 3: Transformed Tuples

ts ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

0 c1 p1 → 0 2280 8760 0 1
1 c1 p1 → 12 2280 8760 0 1
2 c1 p1 ← 2280 24 65110 0 1
2 c1 p1 → 24 2280 8760 0 1
0 c1 p′

1 → 0 3434 6432 0 1
0 c2 p2 → 0 280 17424 0 1
1 c2 p2 → 12 280 17424 0 1
2 c2 p2 → 24 280 17424 0 1

The encryption operation is applied as follows. For each
record in the trace, the values of attributes from set X are
concatenated with the values of attributes from set Y to form
a string. The string is appropriately padded and then en-
crypted under a symmetric encryption algorithm using κ as
the key. The ciphertext output replaces the fields of X in the
output trace; the values for attributes in Y are not affected.

The encryption key is never shared, so the output trace must
be analyzed without access to the values in these fields. A
different encryption key is used for each encryption operator
applied, but the same encryption key is used for all values
of the fields in X . Thus, common values in an encrypted
field are revealed to the analyst. However, if two records
agree upon values in X but differ in values in Y , then the
encrypted values of X will be different for these records. As
a result, the encryption of two records will be same only if
they agree upon values for X as well as for Y .

Table 4 shows the result of applying encryption operators
E{ip1,ip2},κ and E{pt1,pt2}(ip1,ip2),κ to Table 3. The en-

cryption allows connections (identified by source and desti-
nation IP, port fields) to be differentiated. However, it is not
possible see that two connections share the same destination
port, for example. Further, because source and destination IP
are used as input for encryption of ports, it is not possible to
correlate ports across different connections.

Canonical Ordering The canonical ordering operator is used to
replace fields whose actual values can be eliminated as long
as they are replaced by synthetic values respecting the order-
ing of the original values. The ordering operator is denoted
OX(Y) where X is the set of target fields to be replaced, and
Y is an optional set of grouping fields. If the input set Y is
empty, the data entries in fields of X are sorted and replaced
by their order in the sorted list, beginning with zero. If the
input set Y is not empty, then the ordering operation is done
separately for each group of records that agree on values for
the columns in Y .

Translation The translation operation is applied to numerical fields
in the trace, shifting values through addition or subtraction of

4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Number of Partitions

20m
38m
52m

Figure 2: The execution time vs number of parti-
tions graph for varying data sizes varying from 20
million rows to 52 million rows. The query consisted
of six rank operators.

In order to optimize the transformation cost for canonical
ordering, we use vertical partitions of the trace where each
partition has fewer columns and is customized for specific O
operators. The vertical partitions prevents redundant sorts
of the various columns in trace and have low sorting costs
due to smaller size. The results from different partitions are
merged to provide a transformed trace. Figure 2 shows the
reduction in execution time of a query with 6 dense rank
functions as the number of vertical partitions increases.

Further optimization can be done by storing the ranks
computed for a query in auxiliary tables and using them
later for another query. The details of cost estimation, de-
signing partitions for the workload and using auxiliary tables
can be found in our technical report [11].

5. RELATED WORK
K-anonymity [12, 14] and variants [7] apply to the case

where there is exactly one record per entity in the data. Ter-
rovitis et al., have extended the definition of k-anonymity for
the privacy-preserving publication of set-valued data con-
taining multiple entries for the same entity [15]. Verykios
et al [16] considered the privacy of transactional data in the
context of data-mining where they wanted to prevent subsets
of association rules from being learned. The communication
traces are set-valued and transactional in nature. However,
communication trace anonymization is significantly differ-
ent because conventional analysis cannot depend on subtle
ordering and correlation among entries.

For the special case of network traces, anonymization has
received special attention by researchers, with IP packet
traces the most common case. Proposed anonymization
techniques include tcpurify [3], the tcpdpriv [2] and Crypto-
PAn [5] tools (which can preserve prefix relationships among
anonymized IP addresses), as well as frameworks for defining

transformations, such as tcpmkpub [10]. The focus of these
works is on IP address anonymization and do not analyze
the utility of the transformations.

Slagell et al [13] recognized the need for a framework to
support the trade-off between the security and utility of
traces and provide multiple levels of anonymization. The
framework proposed in [8] tries to achieve such a balance
between utility and privacy but it is restricted to secure
queries with aggregations. In [9], the authors require an ana-
lyst to write the analysis program in the language supported
by framework, but it has to be reviewed by the experts for
privacy issues. The PREDICT [1] repository has been es-
tablished to make network traces available for research. The
access to respository is authorized only after the purpose and
identity of researchers is reviewed and verified manually.
Acknowledgements: This work was supported by NSF CNS
0627642, NSF DUE 0830876 and NSF CAREER Award
0643681.

6. REFERENCES
[1] Predict. https://www.predict.org/.

[2] Tcpdpriv. http://ita.eee.lbl.gov/html/contrib/tcpdpriv.html.

[3] Tcpurify. http://irg.cs.ohiou.edu/ eblanton/tcpurify.

[4] K. Claffy. Ten things lawyers should know about internet
research.
http://www.caida.org/publications/papers/2008/lawyers top ten/.

[5] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon. Prefix-preserving
ip address anonymization: measurement-based security
evaluation and a new cryptography-based scheme. Comput.
Netw., 46(2):253–272, 2004.

[6] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Inferring tcp connection characteristics through passive
measurements. In Proceedings of INFOCOMM, 2004.

[7] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1):3, 2007.

[8] J. Mirkovic. Privacy-safe network trace sharing via secure
queries. In NDA ’08, pages 3–10. ACM, 2008.

[9] J. C. Mogul and M. Arlitt. Sc2d: an alternative to trace
anonymization. In MineNet ’06, pages 323–328, 2006.

[10] R. Pang, M. Allman, V. Paxon, and J. Lee. The devil and
packet trace anonymization. ACM SIGCOMM Computer
Communication Review, 36(1):29–38, January 2006.

[11] A. Parate and G. Miklau. A framework for safely publishing
communication traces. Umass Computer Science Technical
Report 2009-040, 2009.

[12] P. Samarati. Protecting respondents’ identities in microdata
release. IEEE Trans. on Knowl. and Data Eng.,
13(6):1010–1027, 2001.

[13] A. Slagell and W. Yurcik. Sharing computer network logs for
security and privacy: A motivation for new methodologies of
anonymization. In SECOVAL, pages 80–89, 2005.

[14] L. Sweeney. k-anonymity: a model for protecting privacy. Int.
J. Uncertain. Fuzziness and KB Syst., 10(5):557–570, 2002.

[15] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving
anonymization of set-valued data. VLDB, 1(1):115–125, 2008.

[16] V. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin, and
E. Dasseni. Association rule hiding. IEEE Transactions on
Knowledge and Data Engineering, 16:434–447, 2003.

