
Scalable Probabilistic Databases with
Factor Graphs and MCMC

Michael Wick
University of Massachusetts

Computer Science
140 Governor’s Drive

Amherst, MA
mwick@cs.umass.edu

Andrew McCallum
University of Massachusetts

Computer Science
140 Governor’s Drive

Amherst, MA
mccallum@cs.umass.edu

Gerome Miklau
University of Massachusetts

Computer Science
140 Governor’s Drive

Amherst, MA
miklau@cs.umass.edu

ABSTRACT
Incorporating probabilities into the semantics of incomplete databases
has posed many challenges, forcing systems to sacrifice modeling
power, scalability, or treatment of relational algebra operators. We
propose an alternative approach where the underlying relational
database always represents a single world, and an external factor
graph encodes a distribution over possible worlds; Markov chain
Monte Carlo (MCMC) inference is then used to recover this un-
certainty to a desired level of fidelity. Our approach allows the
efficient evaluation of arbitrary queries over probabilistic databases
with arbitrary dependencies expressed by graphical models with
structure that changes during inference. MCMC sampling provides
efficiency by hypothesizing modifications to possible worlds rather
than generating entire worlds from scratch. Queries are then run
over the portions of the world that change, avoiding the onerous
cost of running full queries over each sampled world. A significant
innovation of this work is the connection between MCMC sam-
pling and materialized view maintenance techniques: we find em-
pirically that using view maintenance techniques is several orders
of magnitude faster than naively querying each sampled world. We
also demonstrate our system’s ability to answer relational queries
with aggregation, and demonstrate additional scalability through
the use of parallelization on a real-world complex model of infor-
mation extraction. This framework is sufficiently expressive to sup-
port probabilistic inference not only for answering queries, but also
for inferring missing database content from raw evidence.

1. INTRODUCTION
A growing number of applications output large quantities of un-

certain data. For example, sensor networks produce imprecise read-
ings and information extraction systems (IE) produce errorful rela-
tional records. Despite their inevitable inaccuracies, these types
of automatic prediction systems are becoming increasingly impor-
tant. This is evident by the sheer number of repositories culled
from the web by IE systems: CiteSeer, Rexa, DbLife, ArnetMiner,
and Google Scholar. Probabilistic databases (PDBs) are a natural
framework for storing this uncertain output, but unfortunately most
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current PDBs do not achieve the difficult balance of expressivity
and efficiency necessary to support such a range of scalable real-
world structured prediction systems.

Indeed, there is an inherent tension between the expressiveness
of a representation system and the efficiency of query evaluation.
Many recent approaches to probabilistic databases can be charac-
terized as residing on either pole of this continuum. For example,
some systems favor efficient query evaluation by restricting mod-
eling power with strict independence assumptions [5, 6, 1]. Other
systems allow rich representations that render query evaluation in-
tractable for a large portion of their model family [10, 24, 19, 20].
In this paper we combine graphical models and MCMC sampling
to provide a powerful combination of expressiveness and efficient
query evaluation for arbitrary relational queries.

Graphical models are a widely used framework for representing
uncertainty and performing statistical inference in a myriad of ap-
plications, including those in computational biology [21], natural
language processing [11], computer vision [25], information ex-
traction [16], and data integration [28]. These models are becom-
ing even more accessible with the proliferation of many general
purpose probabilistic programming languages [18, 14, 12]. Factor
graphs are a particular type of representation for graphical models
that serve as an umbrella framework for both Bayesian networks
and Markov random fields, and are capable of representing any ex-
ponential family probability distribution.

In our approach, we use factor graphs to represent uncertainty
over our relational data, and MCMC for inference of database con-
tent. We note that up to now probabilistic databases have mostly
been advocated as a method to answer queries over uncertain pos-
sible “truths” that have been discovered by external methods. The
methodology we present here supports what we feel is an even more
important use case: probabilistic inference to discover those proba-
ble “truths” within the infrastructure support of the database. Incre-
mental information extraction with ongoing arrival of new textual
evidence is one important example of such a case. Thus, state-of-
the-art machine-learning-based information extraction, entity res-
olution, and schema alignment can be efficiently run “inside” the
database. Furthermore, rather than running in a pipeline fashion,
they can all interoperate in the same scalable infrastructure, im-
parting the robust advantages of joint inference.

Other recent approaches to probabilistic databases also use graph-
ical models as part of their representation [24, 20]. However, in
practice these systems are limited by the #P bottleneck of query
evaluation and would not scale to the types of complex models and
large data required for many real-world problems [16, 4, 28]. Our
MCMC based inference technique provides the any-time benefits
of sampling while directly addressing the difficulty of evaluating



queries over complex models with densely connected graphs. In
contrast, previous sampling approaches based on generative Monte
Carlo methods [3, 8] require knowing the normalization constant
for each generative function; unfortunately, for general factor graphs
this problem is as difficult as computing marginals (#P-hard). On
the other hand Markov chain Monte Carlo samplers hypothesize
local changes to worlds, avoiding the need to know the elusive nor-
malization constant.

Indeed we demonstrate query evaluation on such a factor graph
(where computing the normalization constant is intractable) and
show that our MCMC sampler based on view maintenance tech-
niques reduces running time by several orders of magnitude over
the simple approach of running the full query over each hypothe-
sized world. We also empirically demonstrate our ability to scale
these intractable models to large datasets with tens of millions of
tuples and show further scalability through parallelization. Further,
we demonstrate our evaluator’s ability to handle aggregate queries.

After introducing related work, the rest of the paper is organized
as follows. First we describe our representation, introduce factor
graphs, and use information extraction as a running pedagogical ex-
ample and application of our approach (although it more generally
applies to other problems that can be modeled by factor graphs).
We then introduce query evaluation techniques, including the ma-
terialized view maintenance approach advocated in this paper. Fi-
nally, we present experimental results demonstrating scalability to
both large data and highly correlated PDBs.

2. RELATED WORK
Although there is a vast body of work on probabilistic databases,

graphical models have largely been ignored until recently. The
work of Sen et al. [19, 20] casts query evaluation as inference
in a graphical model and BayesStore [24] makes explicit use of
Bayesian networks to represent uncertainty in the database. While
expressive, generative Bayesian networks have difficulty represent-
ing the types of dependencies handled automatically in discrimina-
tive models [11], motivating a database approach to linear chain
conditional random fields [23]. We, however, present a more gen-
eral representation based on factor graphs, an umbrella framework
for both Bayesian networks and conditional random fields. Perhaps
more importantly we directly address the problem of scalable query
evaluation in these representations (with an MCMC sampler). Fur-
thermore our approach can evaluate any relational algebra query
without the need to close the graphical model under the semantics
of each operator.

There has also been recent interest in using sampling methods
to estimate tuple marginals or rankings. For example, the MystiQ
[3] system uses samplers to estimate top-k rankings [17]. Joshi
and Jermaine apply variance reduction techniques to obtain bet-
ter sample estimates [9]. MCDB [8] employs a generative sam-
pling approach to hypothesize possible worlds. However, these
approaches are based on generative Monte Carlo techniques and
cannot take advantage of the Markovian nature of MCMC meth-
ods. The MCDB system does use the concept of “tuple bundles”
to exploit overlap across possible worlds, but this approach is dif-
ficult to implement because it requires custom query optimization
code and redefining operators over bundles of tuples (requiring over
20,000 lines of C++ code; in contrast our approach is able to treat
the DBMS as a blackbox and still exploit overlap between sam-
ples). Furthermore, MCDB requires an additional pre-processing
step to compute the overlap. In MCMC sampling, the overlap is
determined automatically as a byproduct of the procedure and we
can harness ideas from incremental view maintenance for efficient
inference. To the best of our knowledge, we are the first Markov

chain Monte Carlo sampler for evaluating queries in probabilistic
databases [26].

3. REPRESENTATION
In our approach, the underlying relational database always stores

a single possible world (a setting to all the random variables), en-
abling us to run any relational algebra query. Database objects such
as fields, tuples, and attributes represent random variables, how-
ever, the factor graph expresses complex statistical relationships
between them. As required, we can recover uncertainty to a de-
sired level of fidelity through Markov chain Monte Carlo (MCMC),
which hypothesizes changes to random variable values that rep-
resent samples of possible worlds. As this underlying database
changes, we execute efficient queries on the modified portions of
worlds and obtain an increasingly accurate approximation of the
probabilistic answers. Another advantage of a graphical model
approach is that it enables automatic learning over the database,
avoiding the need to tune graphical model parameters by hand.

We begin by describing factor graphs and the well known pos-
sible worlds semantics, in which the uncertain database is a set of
possible worlds W , and each w ∈W is a deterministic instance of
the uncertain DB. Following tradition, we endow W with a proba-
bility distribution π : W → [0, 1] s.t.

P
w∈W π(w) = 1, yielding

a distribution over possible worlds.

3.1 Factor Graphs
In our approach π is encoded by a factor graph, a highly expres-

sive representation that can encode any exponential family proba-
bility distribution (including Bayesian and Markov networks). In-
deed their success in areas such as natural language processing,
protein design, information extraction, physics, and machine vision
attest to their general representational power. Factor graphs suc-
cinctly capture relationships between random variables with com-
plex dependencies, making them natural for relational data.

Mathematically, a factor graph (parametrized by θ) is a bipar-
tite graph whose nodes consist of the pair Gθ = 〈V,Ψ〉 where
V = X ∪ Y is the set of random variables: X is the set of ob-
served variables, and Y is the set hidden variables; Ψ = {ψk} is
the set of factors. These are each further described below.

Random Variables
Intuitively, random variables represent the range of values that an
uncertain object in the database may acquire. Each hidden variable
Yi ∈ Y is associated with a domain DOM(Yi) representing the
range of possible values for Yi. For example, the domain could be
binary {yes,no}, enumerations {tall, grande, venti} or real-valued
{r ∈ <|r ≥ 4}. Observed variables are fixed to a particular value
in the domain and can be considered a constant. For simplicity, and
without loss of generality, we will assume that random variables
are scalar-valued (vector-valued and set-valued variables can be re-
written as a combination of factors and variables).

In our notation, capital letters with a subscript (e.g., Yi, Xi) rep-
resent a single random variable, and lowercase letters (e.g., yi)
represent a value from the corresponding variable’s domain: yi ∈
DOM(Yi). We use the notation Xi = xi to indicate that variable
Xi is taking on the value xi. Finally, we use superscripts to denote
sets (of arity represented by the superscipt): the notation Xr = xr

means the set of variables {Xi, Xi+1, · · · , Xi+r} take on the val-
ues (Xi = xi, Xi+1 = xi+1, · · · , Xi+r = xr+1) where it is
implicitly assumed that xi is a value from Xi’s domain. Capital
letters without a subscript refer to the entire variable space (Y is all
hidden variables and X is all observables).



Factors
Factors model dependencies between the random variables. In fact,
multiple factors may govern the behavior of the same variable by
expressing preferences for certain assignments to that variable over
others. This flexible overlapping structure is powerful for modeling
real-world relational data.

Formally, each factor ψ : xm × yn → <+ maps assignments
to subsets of observed variables xm ⊆ DOM(X) and hidden vari-
ables yn ⊆ DOM(Y ) to a non-negative real-valued scalar. Intu-
itively, factors measure the compatibility of settings to a group of
variables, providing a measurement of the uncertainty that the par-
ticular assignment contributes to the world.

Typically, factors are computed as a log-linear combination of a
sufficient statistic (or feature function) φk and corresponding pa-
rameter θk as ψk(xm, yn) = exp (φk(x

m, yn) · θk). Where φ
are user-specified features for representing the underlying data and
θ are corresponding real-valued weights measuring each features
impact. There are a number of available methods from machine
learning and statistics for automatically determining these weights
(avoiding the need for manual tuning).

Given the above definitions, the factor graph Gθ expresses a prob-
ability distribution (parametrized by θ, and conditioned onX) πG :
X × Y → [0, 1] s.t.

P
y∈DOM(Y ) πG(y|x) = 1. More specifically,

if the graph decomposes into a set of factors Ψ (where each ψ ∈ Ψ
has a factor-specific arity of s+ t) then the probability distribution
πG is given as:

πG(Y = y|X = x; θ) =
1

ZX

Y
ψ∈Ψ

ψ(ys, xt) (1)

where ZX =
P
y∈Y

Qn
k=1 ψk(y

s, xt) is an input-dependent nor-
malizing constant ensuring that the distribution sums to 1. Note
two special cases: if X is empty then G is a Markov random field,
and when factors are locally normalized G is a Bayesian network.

3.2 Possible Worlds
An uncertain database D is a set of relations R = {Ri} each

with schema Ski (of arity k) containing attributesRi.a1, · · · , Ri.ak.
Each attribute is equipped with a finite domain DOM(Ri.a1) (a
field is certain if its value is known, otherwise it is uncertain). A de-
terministic tuple t for relationRi is a realization of a value for each
attribute t = 〈v1, · · · , vk〉 for constants v1 ∈ DOM(a1) · · · vk ∈
DOM(ak). Let T be the set of all such tuples for all such relations
in the database. Then the set of all (unrestricted) worlds realizable
by this uncertain database is WD = {w | w ⊆ T}.

Let each field in the database be a random variable whose do-
main is the same as the field’s attribute’s domain. A deterministic
field is an observed variable X and an uncertain field is a hidden
variable Y . Because each field is interpreted as a random variable
with a domain equivalent to its attribute’s, the hypothesis space of
the random variables (X and Y ) contain the set of possible worlds.
Deterministic factors can model constraints over arbitrary sets of
variables by outputting 1 if the constraint is satisfied, and 0 if it is
violated (rendering such a world world impossible). We then for-
mally define W to be all possible worlds with respect to the factor
graph’s probability distribution π:

W = {w ∈WD | πG(w) > 0} (2)

In Appendix A we provide pedagogical examples of factor graphs
and demonstrate how two information extraction problems (entity
resolution and named entity recognition) could be modeled using
our framework.

3.3 Metropolis-Hastings
Metropolis-Hastings (MH) [13, 7] is a general MCMC frame-

work capable of estimating intractable probability distributions over
large state spaces. One advantage of MCMC is that it can produce
samples from the probability distribution π without knowledge of
the normalization constant ZX (which is #P-hard to compute). We
will see in this section that Metropolis-Hastings has many advan-
tages, allowing us to avoid instantiating the graphical model over
the entire database. The basic idea is that MCMC samples new
worlds by hypothesizing changes to the current underlying possi-
ble world, and these changes are simple to compute. We describe
MH more generally below.

MH requires two components, a target distribution that we wish
to sample (in our case π(w)) and a proposal distribution q(·|w)
which conditioned on a previous state w probabilistically produces
a new world w′ with probability q(w′|w). The idea is that q(·|w)
is a distribution from which we can easily sample (in practice such
distributions are easy to construct, and even allow us to inject domain-
specific knowledge).

The algorithm is initialized to a possible world w0 (for example,
randomly). Next samples are drawn from the proposal distribution
w′ ∼ q(·|w), and each sample can either be accepted or rejected
according to a Bernoulli distribution given by parameter α:

α(w′, w) = min

„
1,
π(w′)q(w|w′)
π(w)q(w′|w)

«
(3)

The acceptance probability is determined by the product of two
ratios: the model probability ratio π(w′)/π(w) and the proposal
distribution ratio q(w|w′)/q(w′|w). Intuitively, the model ratio
captures the relative likelihood of the two worlds, and the proposal
ratio eliminates the bias introduced by the proposal distribution.
Given the requirement that the proposal distribution can transition
between any two worlds with positive probability in a finite num-
ber of steps, the Metropolis-Hastings algorithm is guaranteed to
converge to the true distribution encoded by our factor graph. Note
that the normalization constant Z appears in both the numerator
and denominator and cancels from the computation of α. Further,
notice that only factors whose argument variables are changed by
q need to be computed, and therefore only a small portion of the
graph needs to be unrolled on the database to evaluate each pro-
posal (for the two information extraction problems presented in
Appendix A, a proposal that modifies only a constant number of
variables requires evaluating only a constant number of factors).
We show pseudo-code for performing a random-walk with MH in
Algorithm 2 (Appendix E), and demonstrate how factors cancel in
Appendix C. We remark that another important advantage of MH is
that it avoids the need to explicitly enforce deterministic constraints
because the proposer q is designed to transition within the space of
possible worlds only (q is constraint-preserving). An example of
a constraint preserving proposal distribution is the split-merge pro-
poser for entity resolution, in which clusters of mentions are ran-
domly split or merged (it is easy to check that these two operations
preserve the transitivity constraint, avoiding the need to include the
expensive cubic number of deterministic transitivity factors).

4. QUERY EVALUATION
The main query evaluation problem we are concerned with is to

return the set of tuples in the answer of a query Q over the uncer-
tain database 〈W,π〉, along with their corresponding probabilities
(of being in that answer). We say that a tuple t is in the answer
of a query Q if and only if ∃w ∈ W s.t. t ∈ Q(w). Then, the
probability of this event is:



Pr[t ∈ Q(W )] =
X
w∈W

1t∈Q(w)π(w) (4)

We can see that if a tuple occurs in the answer for all possible
worlds, it is deterministic because Equation 4 sums to one. Sim-
ilarly, a tuple occurring in none of the deterministic answer sets has
zero probability and would be omitted from the answer.

Unfortunately, Equation 4 cannot be computed tractably because
it requires summing over the large set of possible worlds. Alterna-
tively we can write the marginal probabilities as the infinite-sample
limit over a set of samples S drawn from π(·|X):

Pr[t ∈ Q(W )] = lim
n→∞

1

n

nX
i

1t∈Q(wi∼π(·)) (5)

and estimate Pr[t ∈ Q(WG)] by using a finite n. Given equation 5,
one approach is to draw independent samples w ∼iid π, requiring
a generative process that must completely instantiate each possible
world (for example, as done in MCDB [8]). However, generating
a possible world may be expensive in practice, motivating our ap-
proach of using Markov chain Monte Carlo to generate samples by
equivalently hypothesizing modifications to possible worlds.

There are two primary advantages of using a sampling approach
for estimating marginals. The first is that as n goes to infinity, the
approximation becomes correct, allowing a trade-off between time
and fidelity: intuitively some applications are time sensitive and re-
quire only course estimates of query marginals, while in others high
fidelity is extremely important. The second important property of
sampling methods is that they are query-agnostic. That is, we need
not concern ourselves with closing the factor-graph representation
over every hypothetical query operator. For example, sampling
methods trivially handle aggregate extensions to relational algebra.

Up to this point, we have formally described our representation
for the possible worlds, the probability distribution, and have posed
a query evaluation problem of interest. We now focus our attention
on solving this query evaluation problem in our framework. We
first describe a basic sampling technique that naively applies MH
to query evaluation. Next, we describe the main algorithm of this
article that combines Metropolis Hastings with materialized view
maintenance techniques.

4.1 Basic MH Query Evaluation
We now precisely define how to use Metropolis Hastings to ob-

tain marginal probabilities for tuples in query answers. In partic-
ular, we use Algorithm 2 (Appendix E) to hypothesize a series of
modifications to worlds. Queries are then executed over hypothe-
sized worlds, and the marginal probabilities are computed accord-
ing to Equation 5 . We should note that consecutive samples in MH
are highly dependent; in situations such as ours, where collecting
counts is expensive (requires executing the query), it is prudent to
increase independence by collecting tuple counts only every k sam-
ples (a technique known as thinning). Choosing k is an open and
interesting domain-specific problem. We present our basic MCMC
sampling method in Algorithm 3 (Appendix E).

Another interesting scientific question is how to inject query spe-
cific knowledge directly into the proposal distribution. For exam-
ple, a query might target an isolated subset of the database, then the
proposal distribution only has to sample this subset; this can be (1)
provided by an expert with domain-specific knowledge, (2) gener-
ated by analyzing the structure of the graph and query, or even (3)
learned automatically through exploration. However, we leave a
thorough treatment of these ideas for future work.

Finally, there is an interesting balance between the traditional
ergodic theorems of MCMC and DBMS-sensitive cost issues aris-
ing from disk-locality, caching, and indexing etc. For example, the
ergodic theorems imply that every MCMC sample be used to com-
pute an estimate. However, faced with the fact that each sample is
non-trivial to compute (requires executing a query), we must bal-
ance the dependency of the samples with the expected costs of the
queries. Adaptively adjusting k to respond to these various issues
is one type of optimization that may be applied to this problem.

Algorithm 1 Query Evaluation with Maintenance Techniques
1: Input:

initial world w0,
number of samples per query: k

2: Initialization:
//run full query to get initial results
S ← Q(w0)
//initial counts for marginals

m← mi =

(
1 if mi ∈ S

0 o.w.
//initial normalizing constant for marginals
z ← 1
w ← w0

3: for i = 1, . . . , number of steps do
4: (w′, ∆−, ∆+)←MetropolisHastings(w,k)
5: S ← S −Q′(w, ∆−) ∪Q′(w, ∆+)

6: m← mi +

(
1 if mi ∈ S

0 o.w.
7: z ← z + 1
8: end for
9: return 1

z
m

4.2 MH Sampling with View Maintenance
Often, executing queries over a relational database is an expen-

sive resource consuming task. One way of obtaining tuple counts is
to run the query over each sampled world; however MCMC enables
us to do much better. Recall that consecutive samples in MCMC
are actually dependent; in fact, as illustrated in Figure 1, a world
w′ is the result of a small modification to the original world w.

We use this figure to directly motivate the relevance of material-
ized view maintenance [2]. Rather than run the original (expensive)
query over each consecutive sample, the query is run only once on
the initial world, then for each subsequent sample, a modified query
is run over the difference ∆ and previous world w. That is, we can
exploit the semantics of set operations to obtain an equivalent ex-
pression for the same answer set. Following the work of Blakeley
et al. [2], we recursively express the answer set as:

Q(w′) = Q(w)−Q′(w,∆−) ∪Q′(w,∆+) (6)

where Q′(w,∆±) is inexpensive because |∆±| � |w| and Q(w)
is inexpensive because it can be recursively expressed as repeated
applications of Equation 6 (bottoming out at the base case of the
initial world which is the only world that must be exhaustively
queried).

We discuss briefly some view materialization techniques. First,
observe that a selection σ(w′) can be re-written:

σ(w′) ≡ σ(w)− σ(∆−) ∪ σ(∆+)

and Cartesian products can similarly be re-written as:



w′.R1 × w′.R2 ≡ w.R1 × w.R2

− w.R1 ×∆−.R2

∪ w.R1 ×∆+.R2

where ∆− is the original setting of the tuples, ∆+ is the new set-
ting, and the notation w.R1 is read as: relation R1 from world w.
Traditional results from relational algebra allow joins to be rewrit-
ten as a Cartesian product and a selection. Further, it is not difficult
to conceive how additional relational operators such as various ag-
gregators can be re-written in terms of the sets ∆− and ∆+. In both
the selection and join, the asymptotic savings can be as high as a
full degree of a polynomial (for example if ∆ is constant in size (as
is often the case) and we lack indices over the fields involved in the
predicates). However, certain functions such as min may not enable
substantial efficiency gains.

The high-level code for our implementation based on view ma-
terialization techniques is shown in Algorithm 1. In practice, the
implementation also requires the use of auxiliary tables for storing
the sets ∆− and ∆+, which are necessary for running the modified
query Q′ from Equation 6. These tables must be updated during
the course of Metropolis-Hastings, and additional cleaning and re-
freshing of the tables and multi-set maps are required in between
deterministic query executions.

Note that projections actually require multi-set semantics [2].
Therefore S and ∆± in Algorithm 1 are multi-sets and the union
and set-difference operators in lines 5 and 6 should be interpreted
accordingly to maintain the necessary counts. In our current imple-
mentation, the multi-set counts and answer sets are maintained in
memory with hash-tables.
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Figure 1: w is the original world, w′ is the new world after k
MCMC steps and ∆− ⊆ w is the set of tuples that were re-
moved from w and ∆+ ⊆ w′ is the set added to w′.

5. EXPERIMENTS
In this section we demonstrate the viability of our approach by

representing the uncertain output of a real-world information ex-
traction problem: named entity recognition (NER). Rather than at-
tempting to store the uncertain output of an external NER system,
we directly model the problem of NER and perform inference in-
side of the database to uncover the possible truths. However, we
go beyond the simple linear-chain model and use a more sophis-
ticated skip chain conditional random field [22] to represent the
uncertainty in both the database and NER. Skip chains and simi-
lar complex models achieve state-of-the-art performance in many
IE tasks; unfortunately no previous PDB is capable of modeling
them because exact marginal inference is intractable. However, we
demonstrate that our MCMC approach effortlessly recovers the de-
sired probabilities for query evaluation.

We implement a prototype system in Scala [15], a functional ex-
tension to Java. The system is built in coordination with our graph-
ical model library for imperatively defined factor graphs, FACTO-
RIE [12], along with Apache Derby database drivers interfaced through
Java’s JDBC API. We implement functionality for (1) retrieving
tuples from disk and then instantiating the corresponding random
variables in memory, and (2) propagating changes to random vari-
ables back to the tuples on disk. Statistical inference (MCMC) is
performed on variables in main memory while query execution is
performed on disk by the DBMS. Additionally, we implement in-
frastructure for both the naive and materialized-view maintenance
query evaluators. As random variables are modified in main mem-
ory, their initial and new values are tracked and written to auxiliary
tables representing the “added” (∆+) and “deleted” (∆−) tuples
required for applying the efficient modified queries.

5.1 Application: named entity recognition
We evaluate our probabilistic database on the real-world task of

named entity recognition. In particular we obtain ten-million to-
kens from 1788 New York Times articles from the year 2004. Re-
call that the problem of named entity recognition is to label each
token in the text document with an entity type. We label the corpus
using CoNLL entities: “PER” (person entity such as Bill), “ORG”
(organization such as IBM), “LOC” (location such as New York
City), “MISC” (miscellaneous entity—none of the above), and “O”
(not a named entity). We use BIO notation (see Appendix D) to
encode named entities more than one token in length making the
total number of labels nine. We store the output of the ten million
NYT tokens in a database relation called TOKEN, with attributes
(TOK ID, DOC ID, STRING, LABEL, TRUTH) where TOK ID is
underlined to indicate that it is the primary key, DOC ID is the doc-
ument for which a token belongs, STRING represents the text of a
token, LABEL is unknown for all tuples and is initialized to “O”,
and TRUTH is the true label that we can use to train our model1.

Next, we define the relational factor graph (Figure 2) over the
TOKEN relation to create our probabilistic database. In particular,
we first include the three factor templates described in Appendix A:
(1) factors between observed strings and corresponding labels, (2)
transition factors between consecutive labels, and (3) bias factors
over labels. Up to this point we have defined the traditional lin-
ear chain model for NER (see [11]). However, skip-chain models
achieve better results [22], so we include skip-edges or factors be-
tween labels whose strings are identical. Intuitively, this factor cap-
tures the dependency that if two tokens have the same string, then
they have an increased likelihood of having the same label. To see
why inference in this graph is intractable, note that the resulting
factor graph (Figure 2) is not tree-structured.

Now that we have defined our database and factor graph, we now
define our proposal distribution for query evaluation. Given a set
of hidden label variables L, our proposal distribution q works as
follows: first a label variable is selected uniformly at random from
L, then the label for L is randomly changed to one of the nine
CoNLL labels {B-PER, I-PER, B-ORG, I-ORG, B-MISC, I-MISC,
B-LOC, I-LOC, O}. This processes is repeated for 2000 proposals
before L is changed by loading a new batch of variables from the
database: up to five documents worth of variables may be selected
(documents are selected uniformly at random from the database).

5.2 Evaluation
We use the model and proposal distribution described in the pre-

vious section in all experiments; we train the model using one-
1to estimate ground truth we use the Stanford NER system
(nlp.stanford.edu/ner/index.shtml)



million steps of SampleRank [27], a training method based on MH.
The method is extremely quick, learning millions of parameters in
a matter of minutes. The query evaluation problems we investi-
gate are all instances of the general evaluation problem described
in Section 4: the goal is to return each tuple along with its proba-
bility of being in the answer set. We evaluate the accuracy of our
samplers by measuring the squared-error loss to the ground truth
query answer (that is, the usual element-wise squared loss). Some-
times we report the normalized squared loss, which simply scales
the loss so that the maximum data point has a loss of 1 (this al-
lows us to compare multiple queries on the same graph). Unless
otherwise stated, we estimate the ground-truth in each problem by
running our sampler beyond convergence, for one-hundred-million
proposals collecting a sample every ten-thousand proposals. In all
experiments we evaluate the query every ten-thousand proposals
(that is k = 10, 000 in Algorithm 3).

a spokesman for IBM corp. said that IBM has a   …   for IBM

Figure 2: A skip chain conditional random field that includes
“skip” edges, or factors between tokens with the same string.
Bias factors over labels are omitted for clarity.

5.3 Scalability
In this section we demonstrate that we are able to scale query

evaluation to a large number of tuples even though exact infer-
ence in the underlying graphical model (skip-chain CRF) is in-
tractable and approximate methods such as loopy belief propaga-
tion fail to converge for these types of graphs [22]. We additionally
compare the materialized MCMC sampler with the basic (naive)
MCMC sampler, demonstrating dramatic efficiency gains. We use
the following simple, but non-selective query that scales linearly
with the number of tuples (note that the DBMS lacks an index over
the STRING field):

Query 1
SELECT STRING
FROM TOKEN
WHERE LABEL=‘B-PER’

In Figure 3(a) we plot query evaluation time versus the number
of tuples in the database (log scale) for both the naive and mate-
rialized approach (over several base ten orders of magnitude). As
stated earlier, we have no way of obtaining the true probabilities, so
we estimate the ground truth by sampling to convergence and then
define the query evaluation time as the time taken to half the quad
loss (squared error) from the initial “single-sample” deterministic
approximation to the query.

For small databases, the sampler based on view-maintenance
techniques does not provide efficiency gains over the naive ap-
proach. Indeed, when the database contains just 10,000 tuples, the
two approaches perform comparably: the naive sampler is slightly
quicker (19 seconds compared to 21 seconds) possibly due to the
overhead involved in maintaining the auxiliary diff tables (recall
that the size of the diff tables is roughly 10,000 tuples because there
are that many steps between query executions). For 100,000 tuples,

the view-based approach begins to outperform the naive approach
(162 seconds versus 178 for naive) and quickly yields dramatic im-
provements as the number of tuples increases. In fact, we were un-
able to obtain the final data-point (ten million tuples) for the naive
sampling approach because we project it to take 227 hours to com-
plete. In stark contrast, the sampler based on view-maintenance
techniques takes under two-and-a-half hours on the same ten mil-
lion tuples. We are impressed with the speed of the evaluation be-
cause inference in skip chains CRFs is extremely difficult and nor-
mally takes hours to complete—even in the non-database setting.

It is worth noting that for the skip-chain CRF (and the sophis-
ticated entity-wise coreference model presented in Figure 6), the
time to perform an MCMC walk-step is constant with respect to
the size of the database. That is, if the proposal distribution only
modifies a constant number of variables, then only a constant num-
ber of tuples in the database are involved in computing the accep-
tance computation (see Appendix C). Therefore, because the time
to perform a single walk-step is constant with respect to the size of
the repository, only two primary factors affect scalability: (1) the
DBMS’s deterministic query execution time and (2) the number
of samples required to change the database in a meaningful way.
This suggests two avenues of future work for improving scalability
even further. In particular, investigating jump functions that better
explore the space of possible worlds appears to be an extremely
fruitful venture with high dividends.

Next, in Figure 3(b), we plot query-evaluation error versus time
for both query evaluators on the 1-million tuple database. Recall
that the two approaches generate the same set of samples, but the
naive approach is slower because it must execute the query on each
possible world (rather than exploiting the set of modified tuples).
Impressively, the maintenance evaluator nearly zeroes the error be-
fore the naive approach can even half the error. Also, notice how
loss tends to decrease monotonically over time. This allows our
approach to be used as an any-time algorithm: applications that re-
quire fine probability estimates may invest the required evaluation
time; those that are time sensitive can settle for courser estimates.

5.4 Parallelization
In general, sampling approaches to query evaluation can be eas-

ily parallelized to yield impressive performance improvements. These
performance improvements are potentially even greater in the con-
text of our MCMC approach because parallelization provides the
additional benefit of generating samples with higher independence,
leading to faster mixing rates. In this section we show that running
multiple query evaluators in parallel dramatically improves the ac-
curacy for a fixed time-span, demonstrating our system’s potential
to satisfy high-fidelity requirements in time-sensitive situations.

We evaluate the effects of parallelization as follows. First we
produce eight identical copies (initial worlds) of the probabilistic
database, each with ten million tuples. We evaluate Query 1 using
the usual set-up except we obtain the ground-truth by averaging
eight parallel chains for ten-thousand samples each. To evaluate
the query, we run as many as eight parallel query evaluators for
one-hundred samples (with the usual ten-thousand MCMC steps
in between each sample), the results are plotted in Figure 4 and
compared against linear improvement. For example, by using two
chains we almost half the loss of the one chain evaluator. Impres-
sively, eight chains reduces the error by slightly more than a factor
of eight, demonstrating that MCMC sampling evaluation can be
further improved by parallelization.

As we can see, this simple form of parallelization is actually
quite powerful because samples taken across multiple chains are
more independent than those taken within a single chain. This is
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Figure 3: The benefits view maintenance query evaluation.

one reason why we actually observe super-linear improvements in
fidelity. These benefits come at the relatively small cost of (1) addi-
tional hard-drive space for storing multiple worlds simultaneously,
and (2) additional processors for parallelization.

Finally, note that because each document is independent, we
could achieve additional parallelization by separating documents
into batches. In general this strategy applies to a variety of IE prob-
lems where sentences, documents, or text segments are indepen-
dent and ripe for parallelization.

5.5 Aggregates
Another benefit of sampling-based approaches is their ability

to answer arbitrary relational algebra queries without the need to
close a representation system under the necessary operators. In
this section we empirically demonstrate that our system is capa-
ble of answering arbitrary extensions to relational algebra such as
aggregates. We begin with a simple aggregate query that counts
the number of person mentions in one-million tuples worth of New
York Times tokens.

Query 2
SELECT COUNT(*)
FROM TOKEN
WHERE LABEL=‘B-PER’
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Figure 4: Multiple evaluators in parallel.

The second aggregate query retrieves documents in which the num-
ber of person mentions is equivalent to the number of organization
mentions within that document (also applied to one-million tuples).

Query 3
SELECT T.doc id
FROM Token T
WHERE (SELECT COUNT(*)

FROM Token T1
WHERE T1.label=‘B-PER’ AND T.doc id=T1.doc id)

=(SELECT COUNT(*)
FROM Token T1
WHERE T1.label=‘B-ORG’ AND T.doc id=T1.doc id)

We plot squared error loss as a function of time for these two
queries. The ground-truth was obtained by running each query for
five-thousand samples with the usual ten-thousand MCMC walk-
steps between each sample. We see that Query 2 rapidly converges
to zero loss, and Query 3 converges at a respectable rate. In fact,
the rapid convergence of Query 2 can be explained by examining
its answer set, which we provide in Appendix B (Figure 7). Notice
how the distribution is highly peaked about the center and appears
to be normally distributed. This is not unusual for real-world data,
and MCMC sampling is celebrated for its ability to exploit this con-
centration of measure, leading to rapid convergence.

6. CONCLUSION AND FUTURE WORK
In this paper we proposed a framework for probabilistic databases

that uses factor graphs to model distributions over possible worlds.
We further advocated MCMC sampling techniques and demon-
strated how the Markovian nature can be exploited to efficiently
evaluate arbitrary relational queries in an any-time fashion.

In future work we will investigate methods for automatically
constructing jump functions to target specific queries.
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APPENDIX
A. PEDAGOGICAL EXAMPLES

We show two information extraction problems in Figure 6 as rep-
resented in our approach. The top three panes show named entity
recognition (NER), and the bottom three panes show entity resolu-
tion (disambiguation). NER is the problem of identifying mentions
of real-world entities in a text document; e.g., we might identify
that “Clinton” is a person entity and “IBM” is an organization en-
tity. The problem is usually cast as sequence labeling, where each
input sentence is divided into a token sequence, and each word
(token) in the sequence is treated as an observed variable with a
corresponding hidden variable representing the label (entity type)
that we are trying to predict. To model this problem with a fac-
tor graph, we use factor templates to express relationships between
different types of random variables; in our NER example, we ex-
press three such relationships (Pane B). The first is a relationship
between observed strings and hidden labels at each position in the
sequence (called the emission dependency: e.g., this models that
the string “Clinton” is highly correlated with the label “person”).
The second is a relationship between labels that neighbor in the se-
quence (known as transition or 1st order Markov dependency: for
example, it is likely that a person label will follow a person label
because people have first and last names), the final dependency is
over each label, modeling the fact that some labels are more fre-
quent than others. Given the template specifications, the graph can
be unrolled onto a database. Pane C shows the random variables
and factors instantiated over the possible world initially shown in
Pane A. The probability of this world is simply a product of all the
factors (black boxes) illustrated in Pane C.

The bottom row of Figure 6 shows the problem of entity resolu-
tion. Once mentions of named entities have been identified, entity
resolution clusters them into real-world entities. The database in
pane C shows a single possible world, the templated factor graph
in Pane D models relationships between the mentions, allowing de-
pendencies over entire clusters of mentions, dependencies between
mentions in the same cluster (modeling that mentions in clusters
should be cohesive), and dependencies between variables in differ-
ent clusters (modeling that mentions in separate clusters should be
distant). Finally, Pane E shows the graph unrolled on the database;
once again, the score of this possible world is proportional to the
product of factors in the unrolled graph. These examples simply
serve as an illustration, in practice we will exploit the benefits of
MCMC inference to avoid instantiating the factor graphs over the
entire database.

B. EXAMPLE QUERY ANSWERS
Here we provide a few examples of query answers. Recall that

answers contain tuples along with their probabilities. In each of
these plots the x axis ranges over actual tuples and the height of the
bar show the probability of that tuple being in the answer. Figure 7
shows the answer to Query 2, an aggregate query asking the number
of person mentions (“B-PER”), over one-million tokens from NYT
articles from the year 2004. Notice that the mass appears to be nor-
mally distributed, where the important observation is that most of
the mass is clustered around a small subset of the answer set. This
important property is exhibited by many real-world datasets, and
enables MCMC to rapidly converge to the ground truth stationary
distribution.

In Figure 8 we show a subset of the answer to Query 4, which
seeks all person mentions (“B-PER”) that co-occur (in the same
document) as a token with string “Boston” having label “B-ORG”.
Intuitively, “Boston” can ambiguously be a location or an organiza-

tion (because organizations are often named after the city in which
they are based).

Query 4
SELECT T2.STRING
FROM TOKEN T1, TOKEN T2
WHERE T1.STRING=‘Boston’ AND T1.LABEL=‘B-ORG’

AND T1.DOC ID=T2.DOC ID AND T2.LABEL=‘B-PER’

We find that many of the people returned in our query are affiliated
with baseball likely because the Boston Red Sox are a prominent
example of an organization named after a city.
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Figure 7: Aggregate query (Query 2) distribution as a his-
togram. Shows the distribution of person mention counts over
one-million NYT tuples.
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Figure 8: Selected tuples from Query 4 over NYT tuples

C. MCMC EFFICIENCIES
The following shows how the acceptance ratio in Metropolis

Hastings can be computed efficiently. We begin with the MH ac-
ceptance ratio in its original form, which depends on the proba-
bilities expressed by the factor graph (Equation 1). Simple alge-
braic manipulation allows the ratio to be expressed in terms factors
neighboring only those variables that change:
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For example, take the skip chain conditional random field pre-
sented in Figure 2 of Section 5. Suppose an initialization where
the middle “IBM” token is assigned the label “LOC” and our jump
function proposes to change the label to “ORG”, then we only need
to compute twelve factors to evaluate the MH acceptance ratio and
decide whether to accept this jump. For this model and proposal
distribution, the number of factors we ever need to evaluate is con-
stant with respect to the number of tokens in the database.

D. BIO LABELS FOR NER
BIO labels allow textual mentions to be composed of more than

one token by prefixing the labels with a B-<T> indicating that the
token is beginning a mention of type <T>, and I-<T> indicating
the token is continuing a mention of type<T>; and an O indicating
the word is not any type of mention.

As an example, if we annotate the phrase Hillary Clinton’s daugh-
ter spoke as:

a spokesman for IBM corp. said that IBM has a   …   for IBM

PER ORG LOC ORGO O O O O O O O

a spokesman for IBM corp. said that IBM has a   …   for IBM

PER ORG ORG ORGO O O O O O O O
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Figure 9: Efficient Metropolis-Hastings evaluation for the skip
chain presented in Section 5. Greyed out factors cancel in the
MH proposal ratio and their corresponding greyed-out argu-
ments may be ignored. Only black factors need to be evaluated.

Hillary (B-PER), Clinton’s (I-PER), daughter (B-PER), spoke (O)

then the sentence is interpreted as having two mentions: Hillary
Clinton’s and Daughter. Note that I-<T> can follow B-<U> if
and only if T = U , otherwise, the interpretation is meaningless.
This suggests we could devise a more intelligent jump function that
takes this constraint into account.

E. QUERY EVALUATION
Here we show the basic components of query evaluation. First

a Metropolis-Hastings random walk is presented in Algorithm 2.
The algorithm takes an initial world w0, then executes n proposals,
resulting in a random walk, ending in some final world w’.

Next we show the basic query evaluation method (Algorithm 3).



Algorithm 2 Random Walk with Metropolis Hastings (n steps)
1: Input:

Initial world w,
number of steps n

2: for i = 1, . . . , n do
3: w′ ∼ q(w)
4: if true ∼ α(w′, w) then
5: w ← w′

6: end if
7: return w
8: end for

Algorithm 3 Basic Query Evaluation Method
1: Input:

initial world w0,
number of steps n
number of samples per query: k

2: Initialization:
//initial state
w ← w0

//initial marginal counts
m← 0
//initial normalizing constant for marginals
z ← 0

3: for i = 1, . . . , n do
4: //run MH for k steps beginning on world w

w ←MetropolisHastings(w,k)
5: //run query on sampled world

S ← Q(w)
6: //increase counts

m← mi +

(
1 if mi ∈ S
0 o.w.

7: z ← z + 1
8: end for
9: return 1

z
m

This method evaluates a queryQ on the probabilistic database. Re-
call that the database always stores a single possible world and is
initialized to some world w. To collect a sample, k MH walksteps
are taken to transition the database to some new worldw′. Then the
query Q is executed over this deterministic world and tuple-counts
are collected. This process is repeated n times. Note that this is
the basic MH query evaluator that does not exploit the overlap be-
tween consecutive MCMC samples; the more sophisticated view-
maintenance evaluator is described in the body of this manuscript.


