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ABSTRACT
A communication trace is a detailed record of the communication
between two entities. Communication traces are vital for research
in computer networks and protocols in many domains, but their
release is severely constrained by privacy and security concerns.

In this paper, we propose a framework in which a trace owner
can match an anonymizing transformation with the requirements of
analysts. The trace owner can release multiple transformed traces,
each customized to an analyst’s needs, or a single transformation
satisfying all requirements. The framework enables formal rea-
soning about anonymization policies, for example to verify that a
given trace has utility for the analyst, or to obtain the most secure
anonymization for the desired level of utility. Because communi-
cation traces are typically very large, we also provide techniques
that allow efficient application of transformations using relational
database systems.

1. INTRODUCTION
A communication trace is a detailed record of the communica-

tion between two entities. Communication traces arise in a variety
of settings and include network traces, phone toll records, instant-
messaging transcripts, among others. Each record in a communica-
tion trace typically identifies a source and a destination, along with
descriptive fields such as time stamp, transmitted content, length of
transmission, and communication ports.

Communication traces are vital to research into traffic analy-
sis, communication protocols, routing in networks, and security
of communication networks. Unfortunately the public release of
communication traces remains highly constrained by privacy and
security concerns and the lack of available traces is a serious con-
cern for researchers [5, 16].

Clearly the content of the communication (e.g. the packet con-
tent in an IP trace, or message content in an IM trace) is too sensi-
tive to release – it is typically not the focus of analysis and is omit-
ted immediately from analyzed traces. But even without transmit-
ted content, a communication log includes the identity of the source
and destination, timing information, and other sensitive communi-
cation details. Traces may therefore contain highly sensitive infor-

mation about users of a communication protocol, about policies or
organizational structure of an institution, etc.

The safe release of communication traces is a significant chal-
lenge. First, communication traces are transactional in nature, with
information about entities spread across multiple records, and cor-
relations between records. Conventional k-anonymization [15, 17]
of a communication trace will tend to destroy these features. Re-
cent variants of k-anonymization for transactional data have been
proposed [18], but are focused on conceptions of utility that are
inappropriate for communication traces (such as mining associa-
tion rules). Differentially private mechanisms can be used to safely
publish statistics about a communication trace, but statistics are in-
sufficient for most communication trace analysis. The second
challenge to protecting communication traces is their massive size.
For example, a trace recording internet protocol (IP) packets at a
medium size institution (used in later experiments) can produce
7.5GB traces every hour. Many proposed anonymization schemes
simply cannot scale to such large data sets.

Our approach In this work we propose an approach to commu-
nication trace publication emphasizing utility and scalability. We
address the problem faced by a trace owner who wishes to allow
a group of independent analysts to safely study a communication
trace.

The first component of our approach is a set of simple, formally-
defined transformation operators that are applied to the trace to
remove or obscure information. These include encryption, field
removal, and domain translation. Transformation operators can be
combined to form composite transformations. The output of the
chosen composite transformation is published, and can be thought
of as a safe view of the original trace.

Unlike most approaches to trace anonymization (in which the
trace owner generates a single anonymized trace) we provide a
framework for the trace owner to anonymize a trace for the needs
of a particular analysis, releasing multiple traces. The published
traces can be more secure because they provide only the needed in-
formation, omitting everything else. Our publication framework
is illustrated informally in Figure 1. The figure shows an original
trace T transformed in four different ways, for use by different an-
alysts. Trace T1 contains sufficient information for both analysts A
and B. Trace T2 is devised for use exclusively by the analyst C,
and trace T3 is customized for the needs of analyst D. An alterna-
tive to publishing both trace T2 and T3 is to derive the single trace
T23 which can support analysts C and D simultaneously.

The second component of our approach is input from the ana-
lyst. We assume the requesting trace analyst provides a descrip-
tion of the information needed for analysis. We propose a simple
language for utility constraints which express the need for certain
relationships to hold between the original trace and the published
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Figure 1: The proposed trace protection framework: the
original trace T may be transformed in multiple ways
(T1, T2, T3, T23) to support the requirements of different ana-
lysts.

trace. The constraints can require, for example, that certain fields
are present and unmodified, or that other values can be obscured
as long as they preserve the ordering relationship present in the
original trace. It is usually straightforward to determine the con-
straints that are needed to support a particular analysis; we provide
an example of a real traces analysis and its corresponding utility
requirements in Section 2.

The third component of our approach is the formal evaluation
of privacy and utility. Because both the transformations and the
utility requirements of analysts are specified formally, it is possible
for the trace owner to analyze trace publication scenarios precisely.
In particular, the trace owner can: (1) decide whether a composite
trace transformation satisfies an analyst’s requirements, implying
that the desired analysis can be carried out on the transformed trace
with perfect utility; (2) compute the most secure transform satis-
fying a given set of analyst requirements; (3) compare the security
of transforms or analyze the impact of a collusion attack that might
allow published traces to be combined; and (4) find the single trans-
form that satisfies the requirements of multiple analyses.

The result of our contributions is a framework in which basic
trace transformation operations can be applied efficiently, and with
a precise, formal understanding of their impact on trace utility and
privacy.

Distinguishing our approach Our approach to protecting com-
munication traces is distinguished in related two ways: we em-
phasize utility as the primary goal of trace transformation, and we
publish multiple customized traces.

Most anonymization techniques impose a hard privacy condition
and offer the best utility possible while satisfying this condition.
As described above, for communication traces the utility is usu-
ally unsatisfactory with existing approaches. We instead impose
a hard utility condition and maximize privacy with respect to it.
This is an unconventional approach, but one that we believe is jus-
tified by the lack of acceptable tools for managing communication
traces and the great societal value of sharing communication traces.
There is some evidence that others are adopting a perspective em-
phasizing utility. The PREDICT repository [1] is a government-
funded project which collects and releases traces. Although basic
anonymization is performed, the released traces must be useful to
analysts, and authentication of the requesting analysts is adopted as
an additional protection mechanism.

Further, as illustrated in Figure 1 we provide utility and security
by customizing the trace transformation to the particular needs of
an analyst. This approach is motivated by an informal survey of re-
cent published research on trace data sets (and anecdotal evidence
from trace researchers themselves) that suggests that many individ-

ual studies could be performed on customized versions of the traces
that would appear to be substantially safer than those published un-
der conventional anonymizing transformations.

Admittedly, the trace owner in our framework must make more
fine-grained choices about which transformed traces to publish to
which users, and must compute and publish multiple anonymized
traces instead of just one. We believe that the benefits to trace se-
curity warrant this added effort. Our transformation operators are
efficient to apply, and we provide a number of tools to help the trace
owner make publication decisions. In addition, the trace owner can
always choose to publish a single trace supporting multiple ana-
lysts. For example, in Figure 1, publishing trace T23 may be easier
than publishing both T2 and T3, but may require a sacrifice in pri-
vacy as, intuitively, Analyst C will receive some additional infor-
mation used in the trace analysis D.

An additional concern with publishing multiple traces are attacks
in which a single party poses as two or more analysts, or two or
more analysts collude. In this case, different published views of the
trace could be combined to reveal more information than intended.
In the absence of a trustworthy authority validating the identities, it
is a challenge to counter such attacks. We can however analyze the
risk of collusion formally: in Section 4 we show that it is possible
to bound how much a group of colluding parties can learn, distin-
guishing between cases where collusion is a serious risk and cases
where little can be gained from collusion.

The remainder of the paper is organized as follows. In Section
2, we apply the main components of our framework in an example
scenario. Section 3 describes our trace transformation operators
and our language for specifying analyst requirements. Section 4
describes the formal analysis of transformations. Section 5 mea-
sures the privacy of sample transformations quantitatively through
experiments on a real network trace, and Section 6 proposes tech-
niques for fast trace transformation in a database system.

2. EXAMPLE: INFERRING TCP CONNEC-
TION CHARACTERISTICS

Throughout the paper we use IP-level packet traces as a running
example. Such traces (see Table 2(a) for illustration) are widely
studied by the networking community and exemplify many of the
challenges of working with communication traces. Our publication
framework is general, however, and can be used for communication
traces from many domains.

In this section, we provide an overview of our framework by
describing an example of a real study from the area of network
research as carried out by Jaiswal et al. [8]. We derive the basic re-
quirements that must be satisfied by any usable trace, we describe
an anonymizing transformation, and finally, we verify the transfor-
mation satisfies the requirements and assess the privacy of the trace.

Analysis Description
A TCP connection is identified by two IP addresses (ip1, ip2) and
two ports (pt1, pt2), corresponding to the sender and receiver. Jaiswal
et al. study the characteristics of TCP connections through pas-
sive monitoring [8]. Their study focuses on estimating the sender’s
congestion window and the round-trip time (RTT) taken by a net-
work packet in the connection. In this analysis, the congestion win-
dow is estimated using a finite state machine(FSM). All the values
required for FSM are present in the IP traces. The estimation of
variable, RTT, is done by computing the time differences between
various occurrences of a packet at the observation point of packets.
The full details of this estimation can be seen in [8].
Utility Requirements
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Table 1: A semi-formal description of utility requirements sufficient
to support the example analysis of TCP connection properties.

Semi-Formal Utility Requirements
Any tuple t Any tuples t1, t2 belonging to
in trace same connection in trace
PRESERVE(t.syn) PRESERVE(t1.seq_no ≤ t2.seq_no)
PRESERVE(t.ack) PRESERVE(t1.seq_no− t2.seq_no)
PRESERVE(t.window) PRESERVE(t1.ts ≤ t2.ts)

PRESERVE(t1.ts− t2.ts)
PRESERVE(t1.seq_no == t2.ack_no)

where PRESERVE(expr) ≡ exprT = exprφ(T )

i.e. value of expr evaluated over tuples in trace T must be equal
to value when expr is evaluated over transformed tuples in φ(T )

Based on this description, we present the requirements or the suf-
ficient conditions that must be satisfied by any transformed trace
supporting the analysis described.

1. R1 The trace must include the type of the packet (SYN or
ACK) and actual value of the window field.

2. R2 The trace must allow the analyst to order the same-connection
packets by sequence numbers(seq_no) or timestamps(ts).

3. R3 The trace should preserve the relative difference for val-
ues in ts and seq_no fields for the same-connection packets.

4. R4 The seq_nos of the sender’s packets and the acknowl-
edgement numbers(ack_no) of receiver’s packets of same con-
nection should be comparable for equality in the trace.

The above requirements are specified semi-formally as a set of
constraints given in Table 1. The formal requirements are con-
straints stating that certain relationships must hold between the
original trace and the anonymized trace. The full description of
our specification language is given in Section 3.2.
Trace Anonymization
Next we describe a simple transformation that provably satisfies the
above utility requirements. For this transformation, we concatenate
the fields (ip1, ip2), encrypting the concatenated string to obtain
anonymized (ip1, ip2) fields. Similarly, we obtain anonymized
(pt1, pt2) by concatenating (pt1, pt2, ip1, ip2) and encrypting it.
This will map same (pt1, pt2) values to different values if they are
from different connections. The fields ts is anonymized by linear
translation such that the minimum value in it for each group of
records identified by (ip1, ip2, pt1, pt2) becomes 0. For example,
if the values of ts were 150,165 and 170, it will be linearly trans-
lated to 0,15,20. The field seq_no, ack_no are anonymized simi-
larly such that the values are translated by the same amount in both
the fields. We do not anonymize any other field, but we remove any
field which is not required in the analysis.

In Section 3.1, we provide a basic set of formal transformation
operators. The anonymization scheme described above can be ex-
pressed by composing these operators. This composite transforma-
tion function φ is given by:

φ = ΠX ◦ E{ip1,ip2},κ1 ◦ E{pt1,pt2}(ip1,ip2),κ2 ◦ T{ts}(C)

◦T{seq_no,ack_no}(C) ◦ I{dir,window,syn,ack}
Here C = {ip1, ip2, pt1, pt2}, E is encryption operator, T is
translation operator, Π is projection operator, I is identity operator,
X is the set of required attributes and κ1, κ2 are keys for encryption
function.

As an example, the records in the sample trace given in Table
2(a) are transformed using above transformation function φ, to
obtain the anonymized view given in Table 2(b). The encrypted

values have been replaced by variables for clarity.
Provable Utility
The utility analysis verifies that the anonymization scheme, defined
by the composite transformation function, satisfies the constraints.

Informally, as we do not anonymize syn, ack and window fields
in the trace, the type information of the packet and actual window
value is available, satisfying R1. The encryption of connection
fields still supports grouping together of records in same connec-
tion (R2). The linear translation of ts and seq_no preserves the
relative order (R2) and the relative differences in these fields (R3).
By using the same transformation for seq_no and ack_no, we make
sure that R4 is satisfied, allowing equality tests on these fields.

The formal verification process requires the formal description
of requirements and the anonymization scheme and it has been de-
scribed in detail in section 4.1.
Privacy Analysis
Our publication mechanism can be seen as an enforcement tool, but
the choice of which transformations of a trace to publish to which
users is an important policy decision. The trace owner must make
policy decisions based on the benefit of releasing the trace and the
potential risk of disclosures.

To aid in this decision, we describe both static and dynamic dis-
closure analysis. The static analysis of transformations holds for
all input traces, and allows for the relative comparison of transfor-
mations based on their information content. We show in Section 4
how to derive conclusions like φ2 is more secure than φ1, which
enables general policies such as “a trace transformed under a trans-
formation at least as secure as φ1 can be released to any internal
collaborator”. The trace owner can also deduce the most secure
transform that satisfies a given set of utility constraints.

The advantage of conclusions from static analysis is that they
hold for all traces. But it is sometimes necessary to assess aspects
of disclosure particular to an individual trace. In Section 5 we per-
form dynamic analysis of trace disclosure by simulating specific
re-identification attacks on a trace, and by measuring the likelihood
of accurating combining two transformations of a trace in a collu-
sion attack.

3. TRANSFORMATION FRAMEWORK
In this section we describe the two main objects of our frame-

work: operators, used by the trace owner to define trace transfor-
mations, and constraints, used by analysts to express utility require-
ments.

3.1 Trace transformation operators
The following transformation operators are applied to a trace in

order to obscure, remove, or translate field values. Each trans-
formation operator removes information from the trace, making it
more difficult for an adversary to attack, but also less useful for an-
alysts. The trace owner may combine individual operators to form
composite transformations, balancing utility and security consider-
ations. The output of a composite transformation will be released
to the analyst.

Operator descriptions
We consider a communication trace as a table consisting of records.
Each record consists of fixed number of fields and a timestamp
field.
Projection The simplest operator is projection, which is similar
to relational projection operator. Projection is denoted ΠX for re-
tained attributes inX . The duplicates are retained by the operator.
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Table 2: (a) Example of IP-level trace (b) Trace transformed under φ as described in Section 2
(a)

Table 2: Original Connection Tuples

ts ver ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

30 4 172.31.1.34 172.31.2.212 22 22 → 5000 7280 8760 0 1
31 4 172.31.1.34 172.31.2.212 22 22 → 5012 7280 8760 0 1
32 4 172.31.1.34 172.31.2.212 22 22 ← 7280 5024 65110 0 1
32 4 172.31.1.34 172.31.2.212 22 22 → 5024 7280 8760 0 1
31 4 172.31.1.34 172.31.2.212 80 9080 → 4780 8214 6432 0 1
30 4 172.31.1.34 172.31.2.89 80 9080 → 1000 1280 17424 0 1
31 4 172.31.1.34 172.31.2.89 80 9080 → 1012 1280 17424 0 1
32 4 172.31.1.34 172.31.2.89 80 9080 → 1024 1280 17424 0 1

Table 3: Transformed Tuples

ts ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

0 c1 p1 → 0 2280 8760 0 1
1 c1 p1 → 12 2280 8760 0 1
2 c1 p1 ← 2280 24 65110 0 1
2 c1 p1 → 24 2280 8760 0 1
0 c1 p′1 → 0 3434 6432 0 1
0 c2 p2 → 0 280 17424 0 1
1 c2 p2 → 12 280 17424 0 1
2 c2 p2 → 24 280 17424 0 1

fields to be encrypted, Y is an optional set of grouping attributes
for encryption, and κ is a secret encryption key.

The encryption operation is applied as follows. For each record
in the trace, the values of attributes from set X are concatenated
with the values of attributes from set Y to form a string. The string
is appropriately padded and then encrypted under a symmetric en-
cryption algorithm using κ as the key. The ciphertext output re-
places the fields of X in the output trace; the values for attributes
in Y are not affected.

The encryption key is never shared, so the output trace must be
analyzed without access to the values in these fields. A different
encryption key is used for each encryption operator applied, but the
same encryption key is used for all values of the fields in X . Thus,
common values in an encrypted field are revealed to the analyst.
However, if two records agree upon values in X but differ in values
in Y , then the encrypted values of X will be different for these
records. As a result, the encryption of two records will be same
only if they agree upon values for X as well as for Y .

Table 2b shows the result of applying encryption operators E{ip1,ip2},κ

and E{pt1,pt2}(ip1,ip2),κ to Table 2a. The encryption allows con-
nections (identified by source and destination IP, port fields) to be
differentiated. However, it is not possible see that two connec-
tions share the same destination port, for example. Further, because
source and destination IP are used as input for encryption of ports,
it is not possible to correlate ports across different connections.
Canonical Ordering The canonical ordering operator is used to
replace fields whose actual values can be eliminated as long as they
are replaced by synthetic values respecting the ordering of the orig-
inal values. The ordering operator is denoted OX(Y ) where X is
the set of target fields to be replaced, and Y is an optional set of
grouping fields. If the input set Y is empty, the data entries in
fields of X are sorted and replaced by their order in the sorted list,
beginning with one. If the input set Y is not empty, then the or-
dering operation is done separately for each group of records that
agree on values for the columns in Y .
Translation The translation operation is applied to numerical
fields in the trace, shifting values through addition or subtraction
of a given constant. The operator is denoted TX(Y ) where X is a
set of target columns that are translated by the operator. The oper-

ator can optionally have another set of columns Y called grouping
columns, which are not affected by the operation.

If the input set Y is empty, all the data-entries in target columns
in X are shifted by a parameter c. The shift is caused by subtract-
ing a random parameter c from each entry in the columns. If the
input set Y is not empty, then all the records in a trace are formed
into groups such that the records in each group have the same data
for columns in Y . For records in each group, the target columns
X are shifted by a parameter c where the value of the parameter is
dependent on the group. The parameter value can be chosen ran-
domly or by using a function that takes the data-entry of Y for the
group as input.
Scaling The scaling operation scales all the values in a given field
by multiplying it with a constant multiplier. The scaling operator is
denoted SX,k for a set of target fields X . The scaling operator acts
scales all the values in fields in X by a factor of k.

It is sometimes convenient to consider the identity transforma-
tion, denoted IX , which does not transform field X , including it in
the output without modification.

Composite Transformations
The operators above can be combined to form composite transfor-
mations for a trace. We assume in the sequel that composite trans-
formations φ are represented in the following normal form:

φ = ΠX ◦ φ1
X1 ◦ φ

2
X2 ◦ ... ◦ φn

Xn
(1)

where φi
Xi

refers to (i + 1)th operator in φ which acts on attribute
set Xi and for all i, φi

Xi
∈ {E, T, O, S, I}. We denote the set of

all such transformations Φ. The last operation applied to the trace is
the projection ΠX . Any operator acting on fields not present in X
will be disregarded. Further we restrict our attention to composite
operations in which each field in the trace is affected only by one
operation: ∀i, j, Xi ∩Xj = {}. In the paper, we will assume ΠX

to be present even if not mentioned in φ. For example, EX1 ◦ TX2

and ΠX1∪X2 ◦ EX1 ◦ TX2 will be the same.

Other operators.
Our framework can easily accommodate other transformation

operators. We have found that this simple set of operators can be
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Table 1: A formal description of utility requirements sufficient to support the example analysis of TCP connection properties.

Formal Utility Requirements
Any(t)⇒ t.syn = φ(t).syn
Any(t)⇒ t.ack = φ(t).ack
Any(t1, t2)⇒ ((t1.ip1== t2.ip1) && (t1.ip2 ==t2.ip2) && (t1.pt1== t2.pt1)&& (t1.pt2 ==t2.pt2)) =
(φ(t1).ip1== φ(t2).ip1 && φ(t1).ip2 ==φ(t2).ip2 && φ(t1).pt1== φ(t2).pt1 && φ(t1).pt2 ==φ(t2).pt2)
Same-Conn(t1,t2)⇒ (t1.seq_no ≤ t2.seq_no) = (φ(t1).seq_no ≤ φ(t2).seq_no)
Same-Conn(t1,t2)⇒ (t1.ts ≤ t2.ts) = (φ(t1).ts ≤ φ(t2).ts)
Same-Conn(t1,t2)⇒ (t1.seq_no− t2.seq_no) = (φ(t1).seq_no− φ(t2).seq_no)
Same-Conn(t1,t2)⇒ (t1.ts− t2.ts) = (φ(t1).ts− φ(t2).ts)
Opp-Pckts(t1,t2)⇒ (t1.seq_no == t2.ack_no) = (φ(t1).seq_no = φ(t2).ack_no)
Any(t)⇒ t.window = φ(t).window
Any(t)⇒ t.dir = φ(t).dir

Qualifiers
Any(t) { }
Any(t1, t2) { }
Same-Conn(t1,t2){(t1.ip1 == t2.ip1) , (t1.ip2 == t2.ip2) , (t1.pt1 == t2.pt1) , (t1.pt2 == t2.pt2)}
Opp-Pckts(t1,t2) {(t1.ip1 == t2.ip1), (t1.ip2 == t2.ip2), (t1.pt1 == t2.pt1), (t1.pt2 == t2.pt2), (t1.dir! = t2.dir)}

Table 2: Original Connection Tuples

ts ver ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

30 4 172.31.1.34 172.31.2.212 22 22 → 5000 7280 8760 0 1
30 4 172.31.1.34 172.31.2.89 80 9080 → 1000 1280 17424 0 1
31 4 172.31.1.34 172.31.2.212 80 9080 → 4780 8214 6432 0 1
31 4 172.31.1.34 172.31.2.212 22 22 → 5012 7280 8760 0 1
31 4 172.31.1.34 172.31.2.89 80 9080 → 1012 1280 17424 0 1
32 4 172.31.1.34 172.31.2.212 22 22 ← 7280 5024 65110 0 1
32 4 172.31.1.34 172.31.2.212 22 22 → 5024 7280 8760 0 1
32 4 172.31.1.34 172.31.2.89 80 9080 → 1024 1280 17424 0 1

Table 3: Transformed Tuples

ts ip1 ip2 pt1 pt2 dir seq_no ack_no window syn ack

0 c1 p1 → 0 2280 8760 0 1
1 c1 p1 → 12 2280 8760 0 1
2 c1 p1 ← 2280 24 65110 0 1
2 c1 p1 → 24 2280 8760 0 1
0 c1 p′

1 → 0 3434 6432 0 1
0 c2 p2 → 0 280 17424 0 1
1 c2 p2 → 12 280 17424 0 1
2 c2 p2 → 24 280 17424 0 1

The encryption operation is applied as follows. For each
record in the trace, the values of attributes from set X are
concatenated with the values of attributes from set Y to form
a string. The string is appropriately padded and then en-
crypted under a symmetric encryption algorithm using κ as
the key. The ciphertext output replaces the fields of X in the
output trace; the values for attributes in Y are not affected.

The encryption key is never shared, so the output trace must
be analyzed without access to the values in these fields. A
different encryption key is used for each encryption operator
applied, but the same encryption key is used for all values
of the fields in X . Thus, common values in an encrypted
field are revealed to the analyst. However, if two records
agree upon values in X but differ in values in Y , then the
encrypted values of X will be different for these records. As
a result, the encryption of two records will be same only if
they agree upon values for X as well as for Y .

Table 4 shows the result of applying encryption operators
E{ip1,ip2},κ and E{pt1,pt2}(ip1,ip2),κ to Table 3. The en-

cryption allows connections (identified by source and desti-
nation IP, port fields) to be differentiated. However, it is not
possible see that two connections share the same destination
port, for example. Further, because source and destination IP
are used as input for encryption of ports, it is not possible to
correlate ports across different connections.

Canonical Ordering The canonical ordering operator is used to
replace fields whose actual values can be eliminated as long
as they are replaced by synthetic values respecting the order-
ing of the original values. The ordering operator is denoted
OX(Y ) where X is the set of target fields to be replaced, and
Y is an optional set of grouping fields. If the input set Y is
empty, the data entries in fields of X are sorted and replaced
by their order in the sorted list, beginning with zero. If the
input set Y is not empty, then the ordering operation is done
separately for each group of records that agree on values for
the columns in Y .

Translation The translation operation is applied to numerical fields
in the trace, shifting values through addition or subtraction of
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Encryption The encryption operator hides target fields by apply-
ing a symmetric encryption function to one or more fields. The
encryption operator is denoted EX(Y ),κ where X is a set of target
fields to be encrypted, Y is an optional set of grouping attributes
for encryption, and κ is a secret encryption key.

The encryption operation is applied as follows. For each record
in the trace, the values of attributes from set X are concatenated
with the values of attributes from set Y to form a string. The string
is appropriately padded and then encrypted under a symmetric en-
cryption algorithm using κ as the key. The ciphertext output re-
places the fields of X in the output trace; the values for attributes
in Y are not affected.

The encryption key is never shared, so the output trace must be
analyzed without access to the values in these fields. A different
encryption key is used for each encryption operator applied, but the
same encryption key is used for all values of the fields in X . Thus,
common values in an encrypted field are revealed to the analyst.
However, if two records agree upon values inX but differ in values
in Y , then the encrypted values of X will be different for these
records. As a result, the encryption of two records will be same
only if they agree upon values for X as well as for Y .

Table 2(b) shows the result of applying encryption operatorsE{ip1,ip2},κ
and E{pt1,pt2}(ip1,ip2),κ to Table 2(a). The encryption allows con-
nections (identified by source and destination IP, port fields) to be
differentiated. However, it is not possible see that two connec-
tions share the same destination port, for example. Further, because
source and destination IP are used as input for encryption of ports,
it is not possible to correlate ports across different connections.
Canonical Ordering The canonical ordering operator is used to
replace fields whose actual values can be eliminated as long as they
are replaced by synthetic values respecting the ordering of the orig-
inal values. The ordering operator is denoted OX(Y ) where X is
the set of target fields to be replaced, and Y is an optional set of
grouping fields. If the input set Y is empty, the data entries in
fields of X are sorted and replaced by their order in the sorted list,
beginning with one. If the input set Y is not empty, then the or-
dering operation is done separately for each group of records that
agree on values for the columns in Y .
Translation The translation operation is applied to numerical
fields in the trace, shifting values through addition or subtraction
of a given constant. The operator is denoted TX(Y ) where X is a
set of target columns that are translated by the operator. The oper-
ator can optionally have another set of columns Y called grouping
columns, which are not affected by the operation.

If the input set Y is empty, all the data-entries in target columns
in X are shifted by a parameter c. The shift is caused by subtract-
ing a random parameter c from each entry in the columns. If the
input set Y is not empty, then all the records in a trace are formed
into groups such that the records in each group have the same data
for columns in Y . For records in each group, the target columns
X are shifted by a parameter c where the value of the parameter is

dependent on the group. The parameter value can be chosen ran-
domly or by using a function that takes the data-entry of Y for the
group as input.
Scaling The scaling operation scales all the values in a given field
by multiplying it with a constant multiplier. The scaling operator is
denoted SX,k for a set of target fields X . The scaling operator acts
scales all the values in fields in X by a factor of k.

It is sometimes convenient to consider the identity transforma-
tion, denoted IX , which does not transform field X , including it in
the output without modification.

Composite Transformations
The operators above can be combined to form composite transfor-
mations for a trace. We assume in the sequel that composite trans-
formations φ are represented in the following normal form:

φ = ΠX ◦ φ1
X1 ◦ φ

2
X2 ◦ ... ◦ φ

n
Xn

(1)

where φiXi
refers to (i+ 1)th operator in φ which acts on attribute

set Xi and for all i, φiXi
∈ {E, T,O, S, I}. We denote the set of

all such transformations Φ. The last operation applied to the trace is
the projection ΠX . Any operator acting on fields not present in X
will be disregarded. Further we restrict our attention to composite
operations in which each field in the trace is affected only by one
operation: ∀i, j,Xi ∩Xj = {}. In the paper, we will assume ΠX

to be present even if not mentioned in φ. For example, EX1 ◦ TX2

and ΠX1∪X2 ◦ EX1 ◦ TX2 will be the same.

Other operators.
Our framework can easily accommodate other transformation

operators. We have found that this simple set of operators can be
used to generate safe transformations supporting a wide range of
analyses . In many cases, adding additional transformation oper-
ators to our framework requires only minor extensions to the al-
gorithms described in Section 4. For example, network researchers
have proposed a prefix-preserving encryption of IP addresses which
could be added as a special transformation operator in our frame-
work. However, it is worth noting that some potentially important
operators (e.g. random perturbation of numeric fields, or general-
ization of field values) will lead to analysis results that are approx-
imately correct, but not exact. In this initial investigation, we are
concerned with supporting exact analyses. We leave as future work
the consideration of such operators and the evaluation of approxi-
mately correct analysis results.

3.2 Specifying Utility Requirements
In our framework, the analyst seeking access to a trace must

specify their utility requirements formally. These requirements are
expressed as a set of constraints asserting a given relationship be-
tween fields in the original trace and fields in the anonymized trace.
The analyst is expected to specify constraints that are sufficient to
allow the exact analysis to be carried out on the trace. Each con-
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Table 3: Lookup table for unary constraints used for verifying utility of
transformation

expression transformations
t.a ≤ t.b TX(Y ), IX , SX,k
t.a ≥ t.b {a, b} ⊆ X
t.a == t.b TX(Y ), SX,k, E{a}(Y ),κ ◦ E{b}(Y ),κ, IX
t.a! = t.b a /∈ Y ,b /∈ Y , {a, b} ⊆ X ,
t.a− t.b TX(Y ), IX , {a, b} ⊆ X
t.a+ t.b IX , {a, b} ⊆ X
t.a× t.b IX , {a, b} ⊆ X
t.a/t.b SX,k, IX , {a, b} ⊆ X

t.a IX , a ∈ X

straint states which item of information must be preserved while
anonymizing the trace. An item of information in a trace can be
either: (i) the value of some field in the trace, or (ii) the value of
some arithmetic or boolean expression evaluated using the fields
from the trace only. The syntax of notation for the constraint is as
follows:

DEFINITION 1 (UTILITY CONSTRAINT). A utility constraint
is described by a rule of the following form:

〈qualifier〉 ⇒ (expr(orig) = expr(anon))

where ′expr′ can be any acceptable arithmetic expression obtained
using operators (+,−, /, ∗) or it can be any boolean expression
obtained using boolean operators (&&, ||,≤,≥,==, ! =) on fields
available in the trace. The expr does not involve any numeric con-
stants. We use record.field and φ(record).field, to mean any valid
field in the original network trace and the transformed trace, re-
spectively. The ’qualifier’ in the constraint is set of boolean condi-
tions that must be true for qualifying records.

The above constraint means that if there are one or more records
in a trace that satisfy the qualifying condition given in 〈qualifier〉,
then the value of expression expr evaluated over these records must
be equal to the value of same expression when evaluated over cor-
responding anonymized records.

A constraint rule is unary if its conditions refer to a single record.
For example, if an analyst wants to test two port numbers for equal-
ity, this can be expressed as the following unary constraint:

Any(t)⇒ ((t.pt1 == t.pt2) = (φ(t).pt1 == φ(t).pt2))

The qualifier Any(t) is true for any record in the the trace. The
constraint says that if the two port numbers in a record have same
value then the corresponding values in the anonymized record should
also be the same. We can see that the information that needs to be
preserved is the equality of port numbers and not their actual val-
ues.

A binary constraint requires two records for evaluating its ex-
pression. For example, the analyst may want to verify that the
acknowledgement number in one packet is equal to the sequence
number of another packet involved in the same TCP connection.
This requirement can be expressed as following constraint:

Same(t1, t2)⇒ (t1.ack == t2.seq) = (φ(t1).ack == φ(t2).seq)

The information that needs to be preserved here is the equality of
two fields across records. The actual values need not be preserved.
The qualifier Same(t1, t2) is user-defined and it states the condi-
tions that must be true for two records to belong to the same con-
nection. In this case, the list of conditions is {(t1.ip1 == t2.ip1),
(t1.ip2 == t2.ip2), (t1.pt1 == t2.pt1), (t1.pt2 == t2.pt2)}.

We believe trace analysts will be able to use these constraint rules
to accurately describe the properties of a trace required for accurate
analysis. In most cases it is not difficult to consider a trace analysis
and derive the fields whose values must be unchanged, or the re-
lationships between values that must be maintained. (See [13] for
additional examples.) The analyst could be assisted in this task by
a GUI or semi-automated procedures, but this is beyond the scope
of the current work.

We note that it is in the interest of the analyst to choose a set
of constraint rules which are specific to the desired analysis task.
Obviously, if all fields in the trace are required to be unmodified,
then the only satisfying trace will be the original, unanonymized
trace. Our framework does not impose any explicit controls on
the utility requirements submitted by analysts, except that the trace
owner is likely to reject requests for constraint requirements that
are too general.

4. ANALYSIS OF TRANSFORMATIONS
An important feature of our framework is that it enables the trace

owner to reason formally about the relationship between utility re-
quirements and anonymizing transformations. In this section we
show how the trace owner can determine conclusively that a pub-
lished trace will satisfy the utility requirements expressed by an-
alysts. In addition, we show how the trace owner can derive the
most secure transformation satisfying a desired set of utility con-
straints. Lastly, we show how the trace owner can compare al-
ternative publication strategies and analyze the potential impact of
collusion amongst analysts who have received traces.

We refer to the formal reasoning about trace transformations and
utility constraints as static analysis because these relationships be-
tween transformations hold for all possible input traces. Other as-
pects of trace privacy cannot be assessed statically; in Section 5 we
measure the privacy of real traces under sample transformations.

4.1 Verifying the utility of a transformation
We now show that it is possible to test efficiently whether a

given transformation will always satisfy the utility requirements ex-
pressed by a set of constraints.

DEFINITION 2 (UTILITY CONSTRAINT SATISFACTION). Given
a set of constraints C and a transformation φ, we say φ satisfies C
(denoted φ |= C) if, for any input trace, the output of the transfor-
mation satisfies each constraint in C.

Checking utility constraint satisfaction is performed indepen-
dently for each constraint rule in C by matching the conditions
specified in a constraint to the operators that impact the named
fields. Recall that the general form for unary constraints is 〈qualifier〉 ⇒
(expr(t) = expr(φ(t))) where expr can either be conjunctive
normal form of one or more comparisons, or an arithmetic expres-
sion. Since the unary constraint has only one record, each com-
parison expression must involve two attributes from the network
trace. For each comparison or arithmetic expression in expr, we
look for the corresponding entry in Table 3 which lists expressions
and compatible transformation operators. If the composite trans-
form function φ has a matching transformations in Table 3, then
we proceed to the next comparison or sub-expression. Otherwise
we conclude that φ does not satisfy the constraint. If φ has a match-
ing transformation for each of the sub-expressions, the constraint is
said to be satisfied by the transformation.

The procedure for verifying binary constraints is similar, with
some minor modifications. The details of the verification process
can be found in our technical report [13].
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4.2 A partial order for transformations
Since each transformation operator removes information from

the trace, some composite transformations can be compared with
one another in terms of the amount of information they preserve.
We show here that there is a natural partial order on transforma-
tions.

DEFINITION 3 (INVERSE SET OF A TRANSFORMED TRACE).
Let N be a trace transformed using transformation φ to get trace
φ(N ). Then, the inverse set for trace φ(N ) is given by all possi-
ble traces that have the same algebraic properties as in φ(N ) and
hence, can give φ(N ) as output when transformed using φ. We use
notation φ−1[N ] to represent this set.

DEFINITION 4 (STRICTNESS RELATION, �). Given two com-
posite transformations φ1 and φ2, we say that φ1 is stricter than
φ2 if -

∀ TraceN , φ−1
2 [N ] ⊆ φ−1

1 [N ]

The definition says that if the transformation φ1 is stricter than φ2,
then the inverse set for any trace N transformed by φ1 is bigger
than that of φ2. In other words, φ1 leads to more traces to look
similar to original trace N and hence, it contains less information
about the original trace as compared with φ2

Using the definition of strictness, the most strict transformation
is Π∅, which removes all attributes of the trace. The least strict
transformation is IX̄ , which simply applies the identity transfor-
mation to all attributes, returning the original trace without modi-
fication. All other transformations fall between these two in terms
of strictness. For example, we have EX(Y ) ≺ OX(Y ) because en-
cryption removes the ordering information from the data-entries.
Also, EX(Y ′) ≺ EX(Y ) if Y ⊆ Y ′ as EX(Y ′) removes the equal-
ity information of X-entries from records which have the same en-
tries for Y but differ in some attribute in (Y ′−Y ). More strictness
relations for basic operators are given in our technical report [13].

Recall that Φ denotes the set of all composite transformations.
Then the following theorem show that the strictness relation has a
number of convenient properties.

THEOREM 1. (Φ,�) is a partially ordered set and forms a join-
semilattice i.e. for any two transformations φ1 and φ2, there is an-
other transformation in Φ, denoted lub(φ1, φ2), which is the least
upper bound of φ1 and φ2.

The proof of this result is included in our technical report [13] .
Theorem 1 can be easily extended to conclude that any set of

transforms has a unique least upper bound. This fact has a number
of important consequences for the trace publisher:

Maximizing trace security Given a set of constraints C it is im-
portant for the trace publisher to compute the most secure
transformation satisfying C. Theorem 1 shows that such a
transformation always exists. We describe an algorithm for
computing this transformation in the next subsection.

Combining transformations Imagine that the trace publisher has
derived three transforms φ1, φ2, φ3 specific to three analyst
requests. The publisher may wish to consider publishing
a single trace that can satisfy all three requests simultane-
ously. The least upper bound of these three transformations,
denoted lub(φ1, φ2, φ3) is the transformation with least in-
formation sufficient for all three analysts.

Collusion analysis Similarly, if the publisher has already released
the traces derived from φ1, φ2, φ3 and fears that the ana-
lysts may collude, then the least upper bound transformation

lub(φ1, φ2, φ3) is a conservative bound on the amount of in-
formation the colluding parties could recover by working to-
gether. We discuss collusion analysis in Sec 4.4.

4.3 Most Secure Transformation
The existence of least upper bound of any two transformation

allows us to find the most secure transformation that can satisfy a
given set of utility requirements.

DEFINITION 5 (MOST SECURE TRANSFORMATION). Given
a set of constraints C, the most secure transformation is the mini-
mum element in Φ[C], denoted min(Φ[C]).

We denote by Φ[C] the set of transformations satisfying the con-
straints of C. Algorithm 1 computes the most secure transform
given a set of constraints. The algorithm uses a map data-structure
which keeps the mapping of a set of constraints to its most secure
transform. It starts by forming |C| different constraint sets with
each set having exactly one constraint. Using the look-up table for
constraints, the strictest operator is obtained for each constraint and
the entry is made in the map (Lines 3-8).

As a next step, two constraint sets (C1, C2) are chosen such that
there exist an attribute which is referred by at least one constraint
in each set. The composite transforms for C1 and C2 can operate
differently on this common attribute. Thus, the least upper bound
of these transforms is computed to get the most secure transform
having properties of both the transforms (Lines 11-13). The steps
for obtaining lub can be seen in the proof of Theorem 1 (refer [13]).
The constraint sets C1 and C2 are now merged to obtain a single
set and it is put into the map along with lub. The previous entries
for the two sets are removed from the map. (Lines 14-16).

The above steps are repeated until no dependent constraint sets
are left. Now, all the transforms in the map transform disjoint set
of attributes and do not conflict. As a final step, the composition
of all these transforms is done. The resulting composition operator
along with the required projection operator is returned as the most
secure transform (Lines 18-23).

Algorithm 1 Most Secure Transform
Input: Set of Constraints C
Output: Composite Transform
Let S = {} be empty set of attributes
Let map = {} be Constraint-set to Transformation Map
for all constraint c in C do

for all attribute a present in c do
S = S ∪ {a}

end for
ρ=Most Secure Operator from look-up table that satisfies c
PUT(map,{c},ρ)

end for
while ∃ dependent sets C1, C2 in map do
ρ1 = GET(map,C1)
ρ2 = GET(map,C2)
ρ = LEAST-UPPER-BOUND(ρ1, ρ2)
REMOVE(map,C1)
REMOVE(map,C2)
PUT(map,C1 ∪ C2, ρ)

end while
φ =

Q
S

for all set C in map do
ρ= GET(map,C)
φ = φ ◦ ρ

end for
return φ
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4.4 Evaluating collusion risk
Customizing published traces to the needs of analysts means that

any given analyst will have the information they need, but not more
than they need. However, if a trace owner publishes a set of traces,
we must consider the implications of one party surreptitiously ac-
quiring multiple traces and attempting to combine them.

The ability to correlate the information present in two (or more)
transformed traces depends greatly on the particular transforma-
tions. As a straightforward response to the risks of collusion, the
trace owner can always consider the least upper bound, lub, of the
published transformations. The lub provides a conservative bound
on the amount of information released since each of the published
traces could be computed from it. Therefore the trace owner can
evaluate the overall privacy of publishing the lub transformation; if
it is acceptable, then the risk of collusion can be ignored.

In many practical cases the lub is overly conservative because
judging the risk of disclosure based on lub assumes that the re-
leased traces can be accurately combined. In many cases, this can’t
be done. For example, if the two transformations σ1 = E{ip1,ip2},κ1◦
ITTL and σ2 = E{ip1,ip2,pt1,pt2},κ2 ◦ Iwin are released, it is
difficult to correlate them to obtain the least upper bound given
by lub(σ1, σ2) = E{ip1,ip2},κ3 ◦ E{pt1,pt2},κ4 ◦ Iwin ◦ ITTL.
One trace includes a TTL field for each pair of hosts, while the
other includes window field for each encrypted connection. Be-
cause distinct port pairs are included in the encryption in the second
trace, but removed from the first, it would be very difficult to relate
records across the two traces. In general, the relationship between
the information content present in two transformations σ1, σ2 and
the information present in the lub(σ1, σ2) depends on (i) the trans-
formation operators applied to fields common to σ1 and σ2, and
(ii) the degree to which these fields uniquely identify packets in
the trace. Static analysis tools can be used to evaluate (i), however
(ii) may depend on the actual input trace and requires quantitative
evaluation, similar to that described next.

A more accurate assessment of collusion requires the quantita-
tive analysis of the traces released. Intuitively, the released traces
are similar to decompositions of the original trace table (but with
complex transformations applied to its fields). In many cases, the
decompositions are lossy, making it difficult to combine the re-
leased traces. The merge process gets even more difficult as the
common fields available in these traces may be transformed in dif-
ferent ways removing different pieces of informations from them.
Thus, the merging of traces not only requires common fields but
also, understanding the common information available in them.
If two traces share common fields, then the common information
available in both is given by the greatest lower bound glb of the cor-
responding transformations. As an example, glb of two transforma-
tions σ1 = EA ◦TB and σ2 = OA ◦TC is given by glb(σ1, σ2) =
EA. Thus, these two traces can be merged using only information
retained by encryption operator EA. The order information of A
available in σ2 cannot be used for relating records as the informa-
tion is not present in σ1.

We now show how the glb can be used to merge any two trans-
formed views of the trace. The following steps allows us to quan-
tify the success with which records in two views can be merged.
Also, it provides us with probabilistic bounds on the possibility of
relating records across views accurately.

Let us suppose, we have two traces obtained by applying trans-
formations σ1 and σ2 to a trace. As a first step towards merging,
we project only the common fields from σ1 and then, compute com-
mon usable information for merge from it using glb(σ1, σ2) to ob-
tain a view V1. Similarly, we obtain common usable information
from σ2 as view V2. The two traces σ1 and σ2 can be accurately

combined only if we have one-to-one mapping from records in V1

to records in V2.
If none of the fields in glb is encrypted, the process of mapping

records from V1 to V2 is straightforward. First, we look for the
records in V1 which have unique values. As these values are not
encrypted, we can find the corresponding records with same values
in V2. Thus, we can map these records accurately. The percentage
of such records in the view gives the success rate of collusion. For
records with non-unique values, we partition them into groups of
records with same values together. For a record in each group, it
can be mapped to its corresponding record in another view correctly
only with probability given by 1/nwhere n is the size of the group.
The chance of successful collusion is limited if the percentage of
exact matches is small and the probability of matching unmatched
record is bounded to limit 1/l where l > 1.

The process of mapping records is more complex if some of the
fields in glb are encrypted. This is because the encrypted values
cannot be compared in two views obtained using different encryp-
tion keys. However, the encryption operator preserves the count of
records that share the same values on encrypted attributes. Recall
that the encryption operator is of form EX(Y ) where Y is set of
grouping attributes and may not be encrypted. As a first step in
mapping process, we partition the records in V1 by grouping the
records which have same values for all Xs and Y s used in encryp-
tion operators in glb. We do similar partitioning in V2. Next, for
each group in V1, we note the count of records (n) in that group.
Now, for each operator EX(Y ) in glb, we look at each group, ob-
serve the values of X and Y in it, and count the records in V1 that
have the same values as that group. We maintain these counts along
with n for each group. We repeat these steps for the view V2.

The next step is to map each group in V1 with its correspond-
ing group in V2. As the encrypted values in these views cannot
be compared, we use the counts computed previously to compare
groups in V1 and V2. It is possible that a group in V1 may have
more than one candidate groups in V2. Next, we use the values
of un-encrypted fields to compare a group in V1 with its candidate
groups in V2. We discard those candidates which do not agree on
these fields. If we are left with only one candidate group, we map
the records in group of V1 to the records in its candidate group.
The mapping process is similar to the case when encryption is not
used. However, only unencrypted values must be used to find the
mapping. These steps should be done for each group in V1. The
percentage of records mapped uniquely gives the success of collu-
sion. A record is unmatched if there is more than one candidate for
its group or it has non-unique values in its group. The probability
of mapping it accurately in first case is bounded by 1/m where m
is the number of candidates for its group. In the second case, the
probability can be computed as described earlier.

After performing the analysis of collusion, we can quantitatively
assess the certainty with which two transformed traces can be matched.
We may conclude, for example, that because large number of records
in V1 have at least k possible matching records in V2, that the col-
lusion risk is negligible. In the next section we describe the results
of this quantitative evaluation for real communication traces.

5. QUANTIFYING TRACE PRIVACY
The techniques in the previous section allow the trace owner to

compare the information content of some transformations, and to
find the most secure transformation that satisfies a given set of
utility requirements. This provides a relative evaluation of trace
privacy. In this section, we perform a quantitative analysis of the
traces, which serves a few purposes. First, it allows us to compare
the transformations that are not comparable (recall that these cases
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occur because the relation � in Section 4 is only a partial order).
Second, we can validate the strictness relations among the trans-
formations. Third, it provides the trace owner with a measure to
evaluate the privacy of the view. In addition, the quantitative anal-
ysis can be used to assess the implications of possible collusion
attacks.

Evaluation Model
The most common threat in trace publication is the re-identification
of the anonymized entities. This is done using a fingerprinting at-
tack. In this attack, the adversary tries to re-identify the entities us-
ing information (available through external means) about properties
of the entities participating in the collected trace. These properties
are called fingerprints. To evaluate the trace security, we collect all
the available fingerprints from the original trace and try to match
them with the entities in the anonymized views. The fingerprint
matching is done using a similarity metric. The anonymized enti-
ties that have similarity metric above a certain threshold are added
to the candidate set of the entity being matched. Then, we mea-
sure privacy of the trace by computing, for various k, the value of
N (k): the number of entities in the trace that have a candidate set
of size less than or equal to k. For example, out of the total number
of entities in the trace, N (1) indicates the number of entities that
are uniquely identifiable. Clearly, a lower value of N (k) indicates
a more privacy-preserving trace.

Experimental setup
In our privacy evaluation, we have used a single IP packet trace
collected at a gateway router of a public university. The trace con-
sists of 1.83 million packets and has 41930 hosts, both external and
internal. The trace was stored as a relational table in the IBM DB2
Express-C 9.5 database system running on a Dell workstation with
Intel Core2 Duo 2.39 GHz processor and 2GB RAM.

The evaluation was done over five anonymized views obtained
using transformations given in Figure 2(a), which were motivated
by some of the analyses studied in the literature. The first two trans-
formations σ1, σ2 support the example analysis given in Section 2.
The transformations ψ1 and ψ2 allow the analyst to count the num-
ber of entities which are involved in connections with a high rate of
out-of-sequence packets. The transformation φ0 has been chosen
as a base case such that it is an upper bound of both σ1 and ψ1. As
such, it is capable of supporting both the above-mentioned analy-
ses. Figure 2(b) illustrates the strictness relationships between the
five transformations studied here.

As fingerprints of each entity in trace, we have extracted infor-
mation about its open ports, the entropy information of the entities
it communicates with, entropy of ports used in communication,
duration of communication and additional information on fields
from trace like maximum and minimum value of TTL and signa-
ture chain of sequence numbers. We have used standard similarity
metrics like Jaccard coefficient, Pearson correlation coefficient to
match the fingerprints. We chose a high threshold value of 0.98 to
enforce strong privacy requirements.

Results and Conclusion
We have summarized our results in Figure 3. Based on the pri-
vacy measureN (1), the number of uniquely identified entities, the
following conclusions can be made from the experiment-

– The least strict transformation φ0 is the least secure transfor-
mation which led to re-identification of 1904 of the 41930
entities present in the trace.

Figure 3: Results giving number of hosts,N (k), whose candidate set size
was ≤ k for k = 1, 5, 10

– The strictness relations among the transformations as shown
in Figure 2(b) are validated.

– The significance of fields for information disclosure about
entities can be observed. For example, the significant differ-
ence in N (1) value for ψ1 and ψ2 indicates that the entropy
of individual ports is highly informative.

– The low value of N (1) for σ2 and ψ2 (66 and 25 respec-
tively) as compared to general view φ0 (1904) illustrates the
significant gain in anonymity resulting from publishing two
traces customized for individual analyses. It allows the trace
owner to decide against publishing a single general view.

– The statically incomparable transformation ψ2 and σ2 can be
compared using this measure. The lower N (1) value for ψ2

as compared to σ2 indicates that ψ2 is more secure than σ2.

– For an analyst with view σ2, if he colludes with analyst in
possession ofψ2 then the only additional information he learns
is order information of IPID field. This field does not lead
to high information disclosure as evident from low N (1)
value for ψ2. Thus, the collusion does not lead to significant
risk.

In a different quantitative analysis, we measure the efficacy of
collusion of views ψ2 and σ2. As described in Section 4.4, we
group the records in one of the view on encrypted fields common
to both. Then, we identify the groups that have a single matching
group in other view due to their unique size or have unique set of
values for other common fields. The records in these groups can be
joined using the order information available in common fields. The
evaluation showed that significant number of records (30.6%) could
be joined with full certainty without even using the information
from syn and ack fields. But as shown earlier, the information
disclosure after successful collusion is not high.

Discussion
Using a quantitative analysis, like that described above, the trace
publisher may decide that some transformed traces are not safe for
release. In this case, our framework would recommend that the re-
quest for such traces be denied because the utility constraints can-
not be satisfied under acceptable privacy conditions. This reflects
our objective to release traces that provide perfect utility to ana-
lysts.

If, however, the analyst is willing to sacrifice accuracy, the trace
publisher can consider alternative anonymization techniques as a
subsequent step. Such alternative anonymization techniques are
not the focus of the present work, although we believe applying
our transformation prior to further anonymization is valuable: our
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Figure 2: (a) Five example transformations used in the quantitative evaluation of host anonymity. (b) Tree representing strictness
relationships between the example transformations (i.e. [child]! [parent] in each case).

σ1 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1},κ2 ◦ E{pt2},κ2 ◦ T{ts}(C) ◦ T{seq,ack}(C) ◦ I{win,dir,syn,ack}
σ2 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1,pt2},κ2 ◦ T{ts}(C) ◦ T{seq,ack}(C) ◦ I{win,dir,syn,ack}
ψ1 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1},κ2 ◦ E{pt2},κ2 ◦ O{ts}(C) ◦ O{seq}(C) ◦ O{ack}(C) ◦ O{ipid}(C) ◦ I{dir,syn,ack}
ψ2 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1,pt2},κ2 ◦ O{ts}(C) ◦ O{seq}(C) ◦ O{ack}(C) ◦ O{ipid}(C) ◦ I{dir,syn,ack}
φ0 = E{ip1},κ ◦ E{ip2},κ ◦ T{ts}(C) ◦ T{seq,ack}(C) ◦ I{pt1,pt2,win,TTL} ◦ O{ipid}(C) ◦ I{dir,syn,ack}

(a)

φ0

ψ1

ψ2

σ1

σ2

(b)

Experimental setup We use a single IP packet trace collected at a gateway router of a public university. The trace
consists of 1.83 million packets and has 41930 hosts, both external and internal. The trace was stored as a relational
table in the open-source PostgreSQL database system running on a Dell workstation with Intel Core2 Duo 2.39 GHz
processor and 2GB RAM. Each transformation was applied to the trace using the database system.

Attack model We focus on one of the most common threats considered in trace publication – the re-identification
of anonymized host addresses. We assume the adversary has access (through some external means) to information
about traffic properties of the hosts participating in the collected trace. We call these host fingerprints. The adversary
attacks the published trace by matching fingerprints of these hosts to the available attributes of hosts in the published,
transformed trace. The result of the attack is a set of unanonymized candidate hosts that could feasibly correspond to
a target anonymized host.

Adversary knowledge We consider a powerful adversary who is able to fingerprint hosts using the collection of
host attributes described in Figure 4. The port1 in Figure 4 refers to the ports on which the fingerprinted host receives
packets, whereas port2 and ip-address2 corresponds to hosts communicating with the fingerprinted host. The rest of
the fields have their usual meanings.

We do not require an exact match of fingerprints and trace attributes. Instead, the adversary applies a similarity
metric to the host pairs, and any un-anonymized host having similarity to the anonymized host, A, above certain
threshold is added to the candidate set of A. A higher threshold value reflects the high confidence of adversary
about the accuracy of his fingerprints. In order to simulate a strong adversary, we compute the fingerprints available
to adversary from the original trace and choose a high threshold value of 0.98. If the fingerprints being matched are
sets of values X and Y , then the similarity is given by sim(X, Y ) = 1 − (|X∪Y |−|X∩Y |)

|X∪Y | . The similarity metric for

continuous numeric-value fingerprints is given by sim(x, y) = 1 − |x−y|
max(x,y) Finally, we use the Pearson correlation

coefficient to compare fingerprints which are chains of values (e.g. the chain of seq no for a connection). We average
the similarity of all the available fingerprints to compute overall similarity of the host.

Privacy Measure We measure privacy by computing, for various k, the value of N (k): the number of anonymized
hosts in the trace that have a candidate set of size less than or equal to k. For example out of the total number of hosts
in the trace, N (1) indicates the number of addresses the adversary is able to uniquely de-anonymize. Clearly, a lower
value of N (k) indicates a more privacy-preserving trace.

Transformations We evaluate the anonymity of the five transformations shown in Figure 2(a), which were motivated
by some of the sample analyses considered earlier in the paper. The first two transformations σ1, σ2 support the
example analysis given in Section 2. Using strictness relations in basic operators (Appendix ??), we can see that
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Figure 2: (a) Five example transformations used in the quantitative evaluation of individual anonymity. (b) Tree representing strictness relationships between
the example transformations (i.e. [child] � [parent] in each case).

transformations remove or obscure the information and relation-
ships among records that are not needed for the intended analyses,
allowing techniques like cell suppression, generalization, or pertur-
bation to be applied only where truly necessary.

It may also be possible to use our quantitative analysis as input
to further anonymization. For example, from the quantitative anal-
ysis, the trace publisher knows exactly the entities in the trace that
can be identified uniquely. One simple approach to make the trace
secure is to delete all the records belonging to these entities before
publishing. The impact on the analysis accuracy upon record dele-
tion depends entirely on the nature of analysis. In an alternative
approach, the trace publisher runs the quantitative analysis with a
lower threshold on similarity of fingerprints. The lower threshold
represents a weaker adversary in quantitative analysis and may re-
sult in vulnerable entities to have more than one entity in its can-
didate set. Now, for each such entity, we modify its fingerprints
available in the trace by removing one or more connections of this
entity. The connections are removed in such a way so that similarity
of the actual fingerprints and the fingerprints available in the trace
after deletion becomes less than or equal to the new threshold cho-
sen for analysis. For the entities that are still uniquely identifiable
with the lower threshold, the process can be repeated using newer
threshold value or its records can be deleted from the trace. This
approach will result in fewer record deletions, and higher utility
than the previous approach.

6. SYSTEM IMPLEMENTATION
In this section we propose techniques for the trace owner to effi-

ciently transform large traces in response to multiple requests from
analysts. We use a relational database to store the original trace
and to apply transformations, creating new traces to be released to
users.

If a composite transformation only uses operators from (E,Π,
T, S, I), then the transformation can be executed as a single scan of
the trace. Relative to the scan, operators I and Π are costless. The
operatorsE, T, S, can be implemented efficiently using scalar user-
defined functions (UDFs), and add only modest CPU overhead.

On the other hand, the implementation of the canonical order-
ing operator OX(Y ) is not trivial. Recall that this operator groups
data records on attributes in Y , and then replaces the values in X
by their corresponding ranks in its group. The grouping and rank
computation requires sorting of data in order {Y,X}, leading to
multiple passes over the data, thus potentially incurring significant
IO cost.

After describing a baseline implementation, we focus on opti-
mizing the implementation of the operator OX(Y ). We describe
an approach based on storing redundant projections of the trace to
speed up sorting, and an approach based on memoization, which
exploits repeated or related requests for transformations.

6.1 Baseline Implementation

Our operator OX(Y ) is similar to the DENSE_RANK() function
recently added to the SQL:2003 standard. This function computes
the rank of the tuples in a relation based on the rank criteria pro-
vided in assisting clause. The operation OX(Y ) can be done using
following clause: DENSE_RANK OVER (PARTITION BY Y OR-
DER BY X).

In the literature, a lot of work has been done in the area of effi-
cient rank computation. However, it is not relevant to our problem
because all these works assume that there can be only one associ-
ated rank with a tuple. Most of these are concerned with returning
top-k tuples or performing efficient join of two relations with dif-
ferent rankings to obtain a single relation with combined ranks. In
our case, we have only single relation and we can have multiple
ranks for a tuple due to multiple O operators in the transformation.
Also, we return all the tuples and not just top-k.

As an example, let us consider the following composite transfor-
mation:

φ = Eip1,ip2 ◦ Tseq_no,ack_no(ip1,ip2) ◦Ots(ip1,ip2) ◦ Iwindow
Assuming that the trace has been stored in the relation TRACE and
we have the required UDFs, the equivalent SQL query is:
SELECT ENCRYPT(ip1,ip2), TRANSLATE(seq_no,ip1,ip2),

TRANSLATE(ack_no,ip1,ip2), window, DENSE_RANK() OVER

(PARTITION BY ip1,ip2 ORDER BY ts) as ts

FROM TRACE;

Any general transformation φ can be seen as composition φ[S] ◦
φ[O] where φ[S] consists only of scalar operators E, T, S, I and
φ[O] consists only ofO operators. As the cost is dominated by φ[O],
we will focus on the cost analysis for φ[O]. Let us consider general
composite transformation φ[O] consisting of n O-operators. Let
this be:

φ[O] = OX1(Y1) ◦OX2(Y2) ◦ ... ◦OXn(Yn)

The SQL query for this transformation can be easily written us-
ing n DENSE_RANK() clauses. The query plan for this query re-
quires the sequential scan of relation TRACE to begin sorting in
order {Y1, X1} for the first rank clause. The sorted relation is writ-
ten into temporary table consisting only of desired columns. This
is followed by n − 1 consecutive sorts of temporary table where
each sort order is determined by each rank clause in the query. The
temporary table with ranks is returned as the query result.

If the relation TRACE consists of N pages, the temporary table
may have fewer columns and may occupy a fraction f (0 < f ≤ 1)
of N pages. We will use the term projection-ratio to mean the
fraction f . If B be the number of pages available in the buffer
pool, then the cost of the query plan is given by:

C = N + n× S(fN,B) (2)

where the cost of sorting is S(N,B) = 2N(1+dlogB−1dN/Bee).
It can be seen that the cost increases linearly with number of

rank operators in the query. Also, the cost increases linearly with
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Figure 4: Workload Tree

size of data N in the range B < N < B(B − 1). Figure 6(a)
shows the experimental verification of linear increase by varying
the number of rank operators and the size of data from 20 million to
52 million records. The data consisted of IP packet trace collected
at the gateway router of a public university. We have used freely
available version of IBM DB2 Express-C for the experiments.

6.2 Cost Optimization
Next we describe a cost reduction technique using vertical par-

titions. The vertical partition of a relation R is a projection of R
which contains an additional column with tuple identifier tid. The
tid allows the tuple in partition to be associated with the parent
tuple in R. For any general transformation, different vertical par-
titions can be selected such that each partition computes some of
the ranks required in the transformation. The rank computation in
each partition is done using the approach stated in previous sub-
section. The tuples containing ranks across partitions can then be
equi-joined using tid to obtain the transformed relation. This ap-
proach results in cost reduction as it can avoid redundant sorting of
columns that are not required in the rank computation. However,
it incurs additional cost of sorting on tid to do sort-merge join of
partitions. We explain the cost reduction using an example.

DEFINITION 6 (WORKLOAD TREE). For a given transforma-
tion, the workload tree is a prefix-tree that represents the sort-
orders required for the O operations. Each leaf in the tree cor-
responds to an O operator and the path from root to leaf gives the
corresponding sort-order.

In Figure 4, we present a workload tree for a transformation with
six O operators. Figure 5(a) shows a naive query plan over a single
relation R for this workload. Note that columns a9, a10, a11, a12

have to undergo 6 sorting phases even if only 3 sorts are required
to compute 3 ranks on these columns. On the other hand, Figure
5(b) shows a query plan using two partitions. In this query plan, the
data in columns (a1, a2, ..., a8) and (a9, ..., a12) have to go through
only 4 sorting phases as opposed to 6 in naive approach. Thus,
vertical partitions save us from redundant sorts and reduce costs by
sorting on smaller partitions.

The cost computation of this approach is similar to naive ap-
proach. It is the sum of naive approach costs for each partition
used and the cost of doing sort-merge join of all the partitions. If
P is the set of partitions chosen for query evaluation, let ni be the
number of rank operators supported by partition pi ∈ P , fiN be
the pages occupied by pi where 0 < fi ≤ 1 and N is number
of pages for relation R. Additionally, there is projection ratio gi
associated with pi. Using the eqn (2) for each partition cost and
ΣPS(figiN,B) + figiN as cost of sort-merge join, overall cost
is given by

ΣP (fiN+ni×S(figiN,B)+(S(figiN,B)+figiN){|P | > 1})
(3)

From our experiments, we have observed that the savings esti-
mated using above equation is within error bounds of 5.12%. Fig-
ure 6(b) shows the reduction in transformation time for workload
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Figure 5: (a)Naive query plan for a query with six rank opera-
tors (b) Query plan using two vertical partitions of the relation

described in Figure 4 as the number of partitions in query plan in-
creases. However, increasing the number of partitions beyond 4 led
to an increase in transformation time as the cost of merging parti-
tions begins to dominate. Thus, it is important to choose partitions
and distribute rank-computations across them optimally. It is pos-
sible to use standard search algorithms like A*-search to determine
this optimal partitioning for a given workload in a cost-based man-
ner using eqn(3).

6.3 Memoization
The communication traces are immutable in nature i.e. there are

no updates once the trace has been collected. Hence, any canonical
ordering computed can be stored and used later in order to save
us from some work in applying newer transformations. In general,
the total number of possible canonical orderings is exponential in
the number of columns in traces. However, we have observed that
the set of interesting canonical orderings for the analysts is much
smaller. Thus, it is likely that different transformations can have
common canonical orderings in them. These transformations are
combination of orderings from the interesting set.

In order to save us from the repeatedly computing the same or-
derings, we maintain an auxiliary tableAwhere we store the order-
ings we have already computed, along with the tuple identifiers in
trace table. The auxiliary table is clustered on the tuple-identifiers
so that the join on tuple-identifiers between computed relation and
auxiliary table does not require sorting of auxiliary table. Thus,
the cost of computing canonical ordering reduces to the I/O cost
involved in scan of auxiliary tables as opposed to sorting some par-
tition.

As we want to ensure that the cost of scanningA is less than the
sorting cost, we make sure that the table A is smaller in size. This
is done by creating new auxiliary table for each canonical ordering.
This table consists only of tuple-id and the column with the order-
ing. The auxiliary tables though come at the cost of space. There is
a trade-off between space allocated for auxiliary tables and the cost
of transformation. In the best case, the cost of composite transfor-
mation is the cost of scanning auxiliary tables when all the order-
ings had been computed previously and stored. In the worst case,
the cost is equal to the cost obtained using the best partitions when
either the orderings were not computed beforehand or there was not
sufficient space for auxiliary table. In any case, the cost is smaller
than the naive computation. In Figure 6(c), the graph shows that
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Figure 6: Experiments on traces of 20 million to 52 million rows. (a) The execution time increases linearly with the number of O
operators in the query; (b) The execution time vs number of partitions graph for different data sizes. The query consisted of six rank
operators. (c) Execution time for a query as the number of ranks already available in auxiliary tables increases.

the execution time of query reduces with increasing memoization
i.e. increase in availability of pre-computed ranks. The execution
times are given for the best 2-partition strategy for the query.

6.4 Row Store vs Column Store databases
As described earlier, the implementation in row-store databases

requires the creation of vertical partitions. If the required partitions
are not present, the transformation cannot be done in an optimal
manner. In case of column stores, the need for vertical partitions is
obviated as it reads only the columns required by the query. Thus,
the optimization in column store databases can be done using query
rewriting similar to row-store implementation but with the use the
original table instead of the partitions. Hence, transformations can
always be applied optimally in column stores without any space
overhead for the partitions. In theory, the column-store databases
look promising but the current implementations of column-store
databases could not execute our queries. We suspect that it is due
to the nature of queries where the result set has number of records
equal to that in the input table. The big size of result set leads to
the memory management problems in the column-store database
implementations.

7. RELATED WORK
The framework described in this paper was first proposed in [14].

This work described the motivation for the framework and pre-
sented the set of operators for transformation. In an extension to
this work, we describe the techniques that allow the trace owner to
reason formally about the utility and the privacy of the communi-
cation traces. In addition, our work describes way to evaluate col-
lusion, privacy and the techniques involved in efficient application
of transformations in the system.

K-anonymity [15, 17] and variants [9] apply to the case where
there is exactly one record per entity in the data and where there is
well-defined fixed-size set of attributes that act as quasi-identifying
attributes. Terrovitis et al., have extended the definition of k-anonymity
for the privacy-preserving publication of set-valued data containing
multiple entries for the same entity [18]. Their work is motivated
by market basket data and the utility goals were related to learning
association rules. The communication traces in our problem are
set-valued in nature. However, communication trace anonymiza-
tion is significantly different because conventional analysis cannot
depend on subtle ordering and correlation among entries. Verykios
et al [19] considered the privacy of transactional data in the context
of data-mining where they wanted to prevent subsets of association

rules from being learned. This was done using deletion or addi-
tion of items from the data. This is dependent on the data mining
algorithm and is not applicable to our problem.

Differential privacy is a rigorous privacy definition in which noise
is calibrated to the sensitivity of queries over a database [6]. Be-
cause sensitive entities are described by many tuples in a trace, the
differential notion of privacy does not map easily to communication
traces. In addition, trace analysts run complex programs over their
data and like to have the data in their possession, rather than ask for
individual query answers from a server. Although some differen-
tially private schemes can generate sets of statistics that approach
synthetic data sets [4], it’s not clear how to adapt them to commu-
nication traces in a manner that will support common analyses.

For the special case of network traces, anonymization has re-
ceived special attention by researchers, with IP packet traces the
most common case. Proposed anonymization techniques include
tcpurify [3], the tcpdpriv [2] and Crypto-PAn [7] tools (which can
preserve prefix relationships among anonymized IP addresses), as
well as frameworks for defining transformations, such as tcpmkpub.
In [2], Xu et al proposed a cryptography based prefix-preserving
anonymization scheme for the ip-addresses. This scheme does not
transform any other field and is known to be insecure. In [12], Pang
et al studied the various fields in traces in some detail and proposed
a framework to support anonymization of different fields. In the-
ory, it can publish multiple views but it lacks the tools for analyzing
utility of the different views.

Slagell et al [16] recognized the need for a framework to support
the trade-off between the security and utility of traces and provide
multiple levels of anonymization. In [11], Mogul et al propose a
framework that requires an analyst to write the analysis program
in the language supported by framework. This program is then re-
viewed by experts for any privacy or security issues. The approved
program is executed by the trace owner and results are provided to
the analyst. In our framework, the analyst submits a set of utility
constraints and not a general purpose program. Therefore, trace
owner does not have the significant burden of evaluating the safety
of a program and the owner is not required to provide computa-
tional resources to run the program, and allows the analyst to refine
their computations on trace.

The framework proposed in [10] tries to achieve balance between
utility and privacy by allowing the analyst to submit secure queries
to trace owner in a language provided by the framework. These
queries permit only certain operations on the fields. The result of
the queries consist of aggregate information like counts and his-
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tograms and not record level information. This approach prevents
the analyst from running a general program which may require in-
formation other than aggregate results. Also, by restricting oper-
ations, this approach may miss the opportunity to release a trace
which may otherwise be safe.

The PREDICT [1] repository has been established to make net-
work traces available for research. The access to respository is au-
thorized only after the purpose and identity of researchers is re-
viewed and verified. To the best of our knowledge, the anonymiza-
tion of traces is not customized to the needs analysts and multiple
versions of traces are not published.

8. CONCLUSION
We have described a publication framework that allows a trace

owner to customize published traces in order to minimize infor-
mation disclosure while provably meeting the utility of analysts.
Using our framework, the trace owner can verify a number of use-
ful privacy and utility properties statically. Such properties hold
for all possible traces, and can be verified efficiently. However,
some aspects of trace privacy must be evaluated on each particular
trace. We have implemented our techniques and quantified trace
privacy under example transformations. Also, we have described
a dynamic evaluation technique to assess the collusion risks when
multiple views of the same trace are released.

In our implementation, we have described ways to apply trans-
formations efficiently to the trace. We have shown that the cost of
applying transformation scales linearly with the size of the trace.
With the use of memoization, we have been able to show that the
cost of applying new successive transformation decreases with time.
In future work we would like to implement a trace transformation
infrastructure to efficiently support multiple transformations of a
trace using parallel data access.
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